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Introduction

Clifford’s theorem is a classical result in algebraic geometry. It proves an upper bound of the
dimension of |D| for a special effective divisor D on a curve.

Theorem 0.1 (Clifford). [Har77, IV Thm. 5.4] Let C be a smooth projective curve and let D be
a special effective divisor on C. Then the dimension of |D| is bounded from above:

dim|D| ≤ 1

2
degD.

Furthermore, equality holds if and only if D is trivial, D is the canonical divisor or C is hyperelliptic
and D corresponds to some f∗OP1(n) where f is the map that makes C hyperelliptic.

This leads to the question of how good the upper bound is. The Clifford index is a measurement
that answers this question.

Definition 0.1. [Eis05, 9A] Let C be a smooth projective curve and let D be a special effective
divisor on C. The Clifford index of D is defined as

Cliff(D) := degD − 2 dim |D|

and the Clifford index of C is defined as

Cliff(C) := min{d− 2r | ∃L ∈ Pic(C),degL = d, h0(L) = r + 1 ≥ 2, h1(L) ≥ 2},

if the genus is larger than three and defined as one, if the genus equals three and C is not hyperel-
liptic. Otherwise it is defined as zero.

Note that the curve C is hyperelliptic if and only if Cliff(C) = 0. Hence, the Clifford index can
be viewed as a measurement of how far a curve fails to be hyperelliptic. In [Gre84] Mark Green
made the following conjecture:

Conjecture 0.2. Let C be a smooth projective curve over a field of characteristic zero. Then

Cliff(C) > l⇔ Kp,2(C,ωC) = 0 ∀p ≤ l.

Here, Kp,2(C,ωC) denotes the Koszul cohomology and ωC is the canonical bundle.

This is very spectacular since the Clifford index on the one hand combines information of many
different line bundles while the vanishing of the Koszul cohomology on the other hand depends only
on the canonical bundle. A reformulation will make this apparent:

Conjecture 0.3 (Reformulation). Let C be a smooth projective curve over a field of characteristic
zero. Then

Cliff(C) = min{p | Kp,2(C,ωC) 6= 0}.

In other words, the Clifford index of a curve can be determined by calculating its Koszul coho-
mology. The direction ”⇐” was proven by Green and Lazarsfeld in an appendix to Green’s paper.
The direction ”⇒” has not yet been proven. Nevertheless, there are partial results such as Voisin’s
theorem. Kemeny’s proof of this theorem will be explained in this bachelor thesis.

Another interesting point of view is to consider Green’s conjecture as a generalization of other
classical results such as Max Noether’s theorem and Petri’s theorem.

Theorem 0.4 (Max Noether). [Ara+85, III §2] Let C be a smooth projective curve which is not
hyperelliptic. Then the canonical ring of C is generated in degree one.
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Later we will see that in the language of Koszul cohomology this assertion translates to
K0,2(C,ωC) = 0. Hence, Noether’s theorem is just the direction ”⇒” in Green’s conjecture in case
of l = 0.

Theorem 0.5 (Petri). [Ara+85, III §3] Let C be a canonical curve of genus g ≥ 4. Then the ideal
sheaf I is generated by elements of degree two, unless C is trigonal or a plane quintic.

By translating this theorem into the language of Koszul cohomology we will see again that it
is equivalent to the vanishing of K1,2(C,ωC). Furthermore, the considered curves are those curves
that satisfy Cliff(C) > 1. Thus, it corresponds to the direction ”⇒” in Green’s conjecture in the
case of l = 1.

The main result of this thesis is Voisin’s theorem, that implies Green’s conjecture for curves of
even genus which lie in K3 surfaces and generate their Picard group. The proof we will consider
is due to Kemeny [Kem20]. It requires some knowledge of K3 surfaces which will be recalled, and
Lazarsfeld–Mukai bundles which will be introduced. Furthermore, we will define Koszul cohomology,
relate it to sheaf cohomology and explore the connection between Green’s conjecture, Noether’s
theorem, and Petri’s theorem. In addition, the proof of the direction ”⇐” will be given. After that
we will construct the secant bundles Γ and S, that will fit into the exact sequence

0→ S → π∗M→ Γ→ 0.

This exact sequence among others will be used to compute multiple (sheaf) cohomology groups,
which will lead to the proof of Voisin’s theorem. Finally, we will apply the developed techniques to
prove a theorem that implies a special case of the geometric syzygy conjecture, a different conjecture
about Koszul cohomology.
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Einleitung

Ein klassisches Resultat der algebraischen Geometrie ist der Satz von Clifford, welcher eine obere
Abschätzung für die Dimension |D| eines speziellen effektiven Divisors D auf einer Kurve liefert.

Satz 0.1 (Clifford). [Har77, IV Thm. 5.4] Sei C eine glatte projektive Kurve und sei D ein spezieller
effektiver Divisor auf C. Dann ist die Dimension von |D| von oben beschränkt durch:

dim |D| ≤ 1

2
degD.

Desweiteren gilt Gleichheit genau dann, wenn D trivial ist, D der kanonische Divisor ist oder
wenn C hyperelliptisch ist und D zu f∗OP1(n) korrespondiert, wobei f die Abbildung ist, die C
hyperelliptisch macht.

Daraus ergibt sich die Frage, wie genau diese Abschätzung ist. Dies wird vom Clifford Index
gemessen.

Definition 0.1. [Eis05, 9A] Sei C eine glatte projektive Kurve und sei D ein spezieller effektiver
Divisor auf C. Dann ist der Clifford Index von D definiert als

Cliff(D) := degD − 2 dim |D|

und der Clifford Index von C ist definiert als

Cliff(C) := min{d− 2r | ∃L ∈ Pic(C),degL = d, h0(L) = r + 1 ≥ 2, h1(L) ≥ 2},

falls das Geschlecht größer als Drei ist und ist definiert als Eins, falls das Geschlecht gleich Drei ist
und C nicht hyperelliptisch ist. Sonst ist er als Null definiert.

Es gilt, dass C hyperelliptisch ist, genau dann wenn Cliff(C) = 0. Daher kann der Clifford Index
als eine Größe gesehen werden, die misst, wie stark eine Kurve nicht hyperelliptisch ist. In [Gre84]
stellte Mark Green die folgende Vermutung auf:

Vermutung 0.2. Sei C eine glatte projektive Kurve über einem Körper der Charakteristik Null.
Dann gilt

Cliff(C) > l⇔ Kp,2(C,ωC) = 0 ∀p ≤ l.

Hier ist Kp,2(C,ωC) die Koszul Kohomologie und ωC das kanonische Bündel.

Diese Vermutung ist sehr spektakulär, da der Clifford Index auf der einen Seite Informationen
von sehr vielen verschiedenen Geradenbündeln kombiniert, während das Verschwinden der Koszul
Kohomologie auf der anderen Seite nur vom kanonischen Bündel abhängt. Eine Umformulierung
verdeutlicht dies:

Vermutung 0.3 (Umformulierung). Sei C eine glatte projektive Kurve über einem Körper der
Charakteristik Null. Dann gilt

Cliff(C) = min{p | Kp,2(C,ωC) 6= 0}.

Der Clifford Index einer Kurve kann also durch die Koszul Kohomologie berechnet werden. Die
Richtung

”
⇐“ wurde von Green und Lazarsfeld in einem Anhang zu Greens Artikel über Koszul

Kohomologie bewiesen. Die Richtung
”
⇒“ ist bis heute offen. Trotzdem gibt es Teil–Resultate, wie

den Satz von Voisin. Kemenys Beweis dieses Satzes wird in dieser Bachelorarbeit erläutert.
Ein weiterer interessanter Aspekt ist, dass Greens Vermutung als eine Verallgemeinerung von

klassischen Resultaten, wie dem Satz von Max Noether oder dem Satz von Petri, betrachtet werden
kann.
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Satz 0.4 (Max Noether). [Ara+85, III §2] Sei C eine glatte projektive Kurve, welche nicht hype-
relliptisch ist. Dann wird der kanonische Ring von C in Grad Eins erzeugt.

Später wird festgestellt, dass dieser Satz zu der Bedingung K0,2(C,ωC) = 0 äquivalent ist. Daher
entspricht Noethers Satz die Richtung

”
⇒“ in Greens Vermutung für l = 0.

Satz 0.5 (Petri). [Ara+85, III §3] Sei C eine kanonische Kurve des Geschlechts g ≥ 4. Dann
wird die Idealgarbe I von Elementen von Grad Zwei erzeugt, außer C ist trigonal oder planar und
quintisch.

Die Aussage, dass I von Elementen von Grad zwei erzeugt wird, ist äquivalent zu K1,2(C,ωC) =
0. Da die betrachteten Kurven Cliff(C) > 1 erfüllen, entspricht Petris Satz der Richtung

”
⇒“ in

Greens Vermutung für l = 1.
Das Hauptresultat der vorliegenden Arbeit ist der Satz von Voisin, welcher Greens Vermutung

im Falle von Kurven von geradem Geschlecht, die in K3 Flächen liegen und deren Picard Gruppe
erzeugen, impliziert. Der Beweis, der hier gegeben wird, ist von Kemeny [Kem20]. Der Beweis
setzt grundlegende Kentnisse über K3 Flächen voraus, welche wiederholt werden und es werden
Lazarsfeld–Mukai Bündel genutzt, welche eingeführt werden. Desweiteren wird Koszul Kohomologie
eingeführt und in Garben Kohomologie umformuliert. Die Verbindung zwischen Greens Vermutung,
Noethers Satz und Petris Satz wird danach erklärt. Zusätzlich wird der Beweis der Richtung

”
⇐“

gegeben. Anschließend werden die Sekanten Bündel Γ und S konstruiert. Diese passen in die kurz
exakte Sequenz

0→ S → π∗M→ Γ→ 0.

Diese und weitere exakte Sequenzen werden genutzt um (Garben) Kohomologien zu berechnen,
was schließlich zum Beweis von Voisins Satz führen wird. Als Anwendung werden die entwickelten
Techniken zu einem Beweis eines Satzes führen, welcher einen Spezialfall der geometrischen Syzygy
Vermutung, einer weiteren Vermutung über Koszul Kohomologie, impliziert.
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1 Notation and preliminaries

We write X, Y for schemes, OX for the structure sheaf of X and ωX for the canonical bundle on
X. All schemes are schemes over the complex numbers and all vector spaces are vector spaces on
the complex numbers. Sheaves of OX -modules are denoted by F , G, . . . and line bundles by L.
The setting of Kemeny’s proof of Voisin’s theorem consists of a K3 surface X, a smooth curve C
contained in X and a line bundle on C. In these cases the line bundle on C is denoted by A so we
can distinguish it from a line bundle on X, denoted by L. The dual of sheaves of OX -modules is
marked by (−)∗, e.g. F∗ := HomOX

(F ,OX).
The next theorems will be used multiple times throughout this thesis.

Theorem 1.1 (Projection formula). [Har77, III Ex. 8.3] Let f : X → Y be a morphism between
varieties over C and let F ∈ Coh(X), E ∈ Coh(Y ) be coherent sheaves where E is locally free. Then
there is an isomorphism between the higher direct images:

Rif∗(F ⊗ f∗E) ∼= Rif∗F ⊗ E .

Theorem 1.2. [Har77, III Ex. 8.1] Let f : X → Y be a morphism and let F be a sheaf on X such
that Rif∗F = 0 for all i > 0. Then

Hn(X,F) ∼= Hn(Y, f∗F)

for all n ≥ 0.

Theorem 1.3 (Künneth formula). [21, Tag 0BED] Let X, Y be varieties and let F ∈ Coh(X),
G ∈ Coh(Y ). Define F�G := p∗XF⊗p∗Y G ∈ Coh(X×Y ) where pX : X×Y → X and pY : X×Y → Y
are the projections. Then there is a canonical isomorphism for all n ≥ 0:

Hn(X × Y,F � G) ∼=
⊕
a+b=n

Ha(X,F)⊗Hb(Y,G).

Theorem 1.4 (Serre duality). [Har77, III Cor. 7.7] Let X be a smooth projective scheme which
is equidimensional of dimension n. Let F be a locally free sheaf on X. Then there is a natural
isomorphism

Hi(X,F) ∼= Hn−i(X,F∗ ⊗ ωX)∗.

Theorem 1.5 (Grauert’s theorem). [Har77, III Cor. 12.9] Let f : X → Y be a projective morphism
between varieties and suppose that Y is integral. Let F ∈ Coh(X) be flat over Y such that the
function y 7→ hi(Xy,F|Xy

) is constant for some i ≥ 0. Then Rif∗F is a locally free sheaf on Y
and for every y ∈ Y there is a natural isomorphism

Rif∗F ⊗ κ(y)
∼→ Hi(Xy,F|Xy

).

Theorem 1.6 (Brill–Noether). [Ara+85, V Thm. 1.1, 1.5] Let C be a smooth projective curve of
genus g and let d ≥ 1 and r ≥ 0 be integers. Suppose that C is general in the sense of Brill–Noether
theory. Then there exists a line bundle L on C of degree d that satisfies h0(C,L) − 1 = r if and
only if g − (r + 1)(g − d+ r) ≥ 0.

1.1 K3 surfaces

K3 surfaces are special kinds of surfaces and very interesting in their own right. However, very
little theory is needed, so this section is just a reminder of the most basic facts.

https://stacks.math.columbia.edu/tag/0BED
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Definition 1.1. [Huy15, Ch. 1 Def. 1.1] Let k be a field. A K3 surface is a complete non-singular
variety X of dimension two such that

(i) ωX/k ∼= OX

(ii) H1(X,OX) = 0

Remark. Let X be a K3 surface over C. Then Serre duality implies χ(X,OX) = 2 where χ(X,−)
denotes the Euler–Poincaré characteristic.

Definition 1.2. [Huy15, Ch. 1] Let X be a non-singular complete surface over a field k and let
L1, L2 ∈ Pic(X). We define the intersection pairing (L1.L2) of L1 and L2 as

(L1.L2) := χ(X,OX)− χ(X,L∗1)− χ(X,L∗2) + χ(X,L∗1 ⊗ L∗2).

Lemma 1.7. [Huy15, Ch. 1] Let X be a K3 surface and let L1, L2 ∈ Pic(X). Then the following
assertions hold:

(i) The intersection pairing is a symmetric bilinear form (−.−) : Pic(X)× Pic(X)→ Z.

(ii) If L1 = O(C) for a curve (i.e. a divisor) C ⊂ X then (L1.L2) = deg(L2|C).

(iii) If L1 is ample and C ⊂ X is a curve then (L1.C) := (L1.O(C)) = deg(L1|C) > 0.

Theorem 1.8 (Riemann–Roch for line bundles on surfaces). Let X be a non-singular complete sur-
face and let L ∈ Pic(X). Then we can relate the Euler–Poincaré characteristic and the intersection
form in the following way:

χ(X,L) =
1

2
(L.L ⊗ ω∗X) + χ(X,OX)

Corollary 1.8.1 (Riemann–Roch for line bundles on K3 surfaces). Let X be a K3 surface and let
L ∈ Pic(X). Then

χ(X,L) =
1

2
(L.L) + 2.

1.2 Lazarsfeld–Mukai bundles

Lazarsfeld–Mukai bundles are locally free sheaves on a K3 surface and arise from line bundles on
curves contained in the considered K3 surface. They were introduced by Lazarsfeld in his paper
[Laz86] where they were applied to Brill–Noether theory. Mukai used those vector bundles for the
classification of prime Fano manifolds of coindex three in his paper [Muk89], see introduction of
[Apr12]. We will give the construction and prove some basic results.

Definition 1.3. [Laz86, Ch. 1] Let X be a K3 surface, let C ⊂ X be a smooth projective irreducible
curve of genus g and let A be a line bundle on C such that A and A∗ ⊗ ωC are globally generated.
Then the sheaf FC,A is defined as the kernel of the evaluation map H0(C,A) ⊗OX → i∗A where
i : C → X is the given closed immersion.

Remark. [Laz86, Ch. 1]

(i) Since A is globally generated, there is a short exact sequence

0→ FC,A → H0(C,A)⊗OX → i∗A → 0. (1)
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(ii) Dualizing the above sequence results in

0→ HomX(i∗A,OX)→ HomX(H0(C,A)⊗OX ,OX)→ F∗C,A
→ Ext1X(i∗A,OX)→ Ext1X(H0(C,A)⊗OX ,OX).

As H0(A) ⊗ OX is locally free, the last Ext-sheaf is trivial. On the other hand i∗A is a torsion
sheaf and hence HomX(i∗A,OX) = 0. Finally, we use [Huy15, Ch. 9 Lem. 2.1] to conclude that
Ext1X(i∗A,OX) ∼= i∗(ωC ⊗A∗). Therefore, the exact sequence becomes the short exact sequence

0→ H0(C,A)∗ ⊗OX → F∗C,A → i∗(ωC ⊗A∗)→ 0. (2)

(iii) The sheaf A has codimension one over OX . Ergo, the short exact sequence (1) implies that
FC,A is a vector bundle and so is its dual.

Definition 1.4. Consider a K3 surface X, a smooth curve C ⊂ X, a line bundle A on C and the
vector bundle FC,A as in the previous definition. The Lazarsfeld–Mukai bundle EC,A is defined as
F∗C,A.

Lemma 1.9. [Laz86, Ch. 1] Let E be the associated Lazarsfeld–Mukai bundle to a smooth projective
curve C ⊂ X and a line bundle A on C such that A and ωC ⊗A∗ are globally generated. Then the
following assertions hold true:

(i) E is globally generated

(ii) H0(X,FC,A) = 0 = H2(X, E)

(iii) H1(X,FC,A) = 0 = H1(X, E)

(iv) h0(X, E) = h0(C,A) + h1(C,A)

(v) det(E) ∼= OX(C)

Proof. (i) By construction, there is the short exact sequence

0→ H0(C,A)∗ ⊗OX → E → i∗(ωC ⊗A∗)→ 0.

Since ωC ⊗A∗ is globally generated, the evaluation map H0(C,ωC ⊗A∗)⊗OX � i∗(ωC ⊗A∗) is
surjective. By the vanishing of H1(X,OX), we get the following commutative diagram:

0 H0(C,A)∗ ⊗OX E i∗(ωC ⊗A∗) 0

H0(C,ωC ⊗A∗)⊗OX .

This yields a surjection (H0(C,A)∗⊕H0(C,ωC⊗A∗))⊗OX � E , and hence E is globally generated.

(ii) By Serre duality, it suffices to prove H0(X,FC,A) = 0. This follows directly from sequence (1):

0→ H0(X,FC,A)→ H0(C,A)
∼→ H0(X, i∗A).

(iii) We continue the long exact sequence from (ii):

H0(C,A)
∼→ H0(X, i∗A)→ H1(X,FC,A)→ H1(X,H0(C,A)⊗OX).

Hence, the map H0(X, i∗A)→ H1(X,FC,A) is the zero map. However, H1(X,H0(X,A)⊗OX) = 0
since X is a K3 surface. Ergo, H1(X,FC,A) = 0. The second equation follows from Serre duality.
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(iv) Since H1(X,OX) = 0, the proof of (i) implies H0(X, E) ∼= H0(C,A)∗ ⊕H0(C,ωC ⊗A∗). On
the other hand Serre duality implies H0(C,ωC ⊗A∗) ∼= H1(C,A)∗.

(v) This proof is due to [Huy15, Ch. 9 Lem. 2.1]. Consider the short exact sequence

0→ H0(C,A)∗ ⊗OX → E → i∗(ωC ⊗A∗)→ 0.

The sheaf ωC⊗A∗ is locally trivial on C. In other words, it is isomorphic to OC on C \{x1, · · ·, xn}.
Thus, the pushforward i∗(ωC ⊗A∗) is isomorphic to i∗OC on X \ {x1, · · ·, xn}. Locally free sheaves
on X are determined by their restriction to X \ {x1, · · ·, xx}. Therefore, to compute det(E) we can
assume that i∗(ωC ⊗A∗) ∼= OC . Now, use det(OC) ∼= OX(C) to conclude the desired isomorphism.

1.3 Introduction to the setting of Kemeny’s proof of Voisin’s theorem

The setting for section 3, 4 and parts of section 2 will be introduced along with basic observations.
Let X be a K3 surface with Picard group Pic(X) ∼= Z[L] where L is a globally generated ample

line bundle on X. Assume that (L.L) = deg(L|C) = 2g − 2 where g = 2k and C ∈ |L|. The
curve C can be chosen irreducible because otherwise the irreducible components would generate
the Picard group of X. Now, two important observations can be made. First, observe that the
ideal sheaf IC of C ⊂ X is by definition isomorphic to L∗. Therefore, the adjunction formula yields
the isomorphism ωC ∼= L|C ⊗ ωX |C ∼= L|C . This immediatly implies that the genus of the curve C
is g = 2k. Second, note that H1(X,Lq) = 0 for all q. Indeed, there is the short exact sequence

0→ L∗ → OX → OC → 0.

Taking cohomology yields

H0(X,OX)
∼→ H0(C,OC)→ H1(X,L∗)→ H1(X,OX) = 0.

Hence, H1(X,L∗) = 0. Now, we proceed via induction. Tensoring the above sequence by L−q+1

and taking cohomology results in

0 = H0(C,ω−q+1
C )→ H1(X,L−q)→ H1(X,L−q+1) = 0.

Therefore, H1(X,L−q) = 0 for all q ≥ 0. Using Serre duality, this implies H1(X,Lq) = 0 for all q.
Define ML as the kernel of the evaluation map H0(X,L) ⊗ OX � L, which is surjective

since L is globally generated. Consequently, ML is locally free itself since it is the kernel of
a surjection between locally free sheaves. This bundle is the object of interest: in the section

on Koszul cohomology it will be explained how the vanishing of H1(X,
k+1∧
ML) implies Voisin’s

theorem.
Throughout section 3 and section 4 a fixed line bundle A on the curve C will be considered.

This bundle gives rise to a Lazarsfeld–Mukai bundle which is needed for the construction of the
secant sheaves and later for the secant bundles. The choice of A is, up to degree and dimension
of global sections, arbitrary and we are not interested in examining line bundles with these fixed
invariants. The standard notation grd summarizes these two numerical invariants of line bundles on
curves:

Definition 1.5. [Har77, IV 5] Let C be a smooth projective curve and let A be a line bundle on
C. We call A a grd if deg(A) = d and dim |A| := h0(C,A)− 1 = r.

Note that C is general by [Laz86]. Therefore, Brill–Noether theory implies that a g1d exists on
C if and only if d ≥ k + 1. Let A be a g1k+1. Observe that a base point x ∈ C of H0(C,A) would
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yield the g1k A(−x), which cannot exist. Hence, A is globally generated. Similarly, ωC ⊗ A∗ is a
gk−13k−3 and a gk−1d exists if and only if d ≥ 3k − 3. Ergo, it has to be globally generated as well.
Thus, a Lazarsfeld–Mukai bundle E can be associated to A. By definition h0(C,A) = 2 and by
the Riemann–Roch formula h1(C,A) = k. Consequently, lemma 1.9 implies that h0(X, E) = k+ 2.
Consider the short exact sequence 0 → FC,A → H0(C,A) ⊗ OX → i∗A → 0. Since h0(C,A) = 2,
FC,A, has to be locally free of rank two and so does E .
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2 Koszul cohomology, Green’s conjecture and syzygies

The goal of this chapter is to indroduce Koszul cohomology, to explain Green’s conjecture and
to prove the known direction in Green’s conjecture. Furthermore, some context for the geometric
syzygy conjecture will be given.

2.1 Koszul cohomology

Koszul cohomology seems to be more algebraic than geometric so we will start with the definition
right away and explain the connection to geometry afterwards.

Let V be a finite dimensional vector space and let Sym(V ) be its symmetric algebra. Let

M =
⊕
q∈Z

Mq be a graded Sym(V )-module. Consider the product π :
p−1∧

V ∗⊗V ∗ →
p∧
V ∗. Dualizing

π yields
p∧
V

f→
p−1∧

V ⊗ V , which is the linear extension of

f :

p∧
V →

p−1∧
V ⊗ V, v1 ∧ · · · ∧ vp 7→

(−1)p

p

p∑
i=1

(−1)iv1 ∧ · · · ∧ v̂i ∧ · · · ∧ vp ⊗ vi.

Viewing V as the degree one part of Sym(V ), we get the multiplication map V ⊗Mq
mq→ Mq+1.

Define the map dp,q as the composite

p∧
V ⊗Mq

p−1∧
V ⊗ V ⊗Mq

p−1∧
V ⊗Mq+1.

f⊗id id⊗mq

Definition 2.1. [Gre84, Ch. 0] Consider the complex

p+1∧
V ⊗Mq−1

p∧
V ⊗Mq

p−1∧
V ⊗Mq+1.

dp+1,q−1 dp,q

(i) The Koszul cohomology Kp,q(M,V ) is defined as Kp,q(M,V ) := ker(dp,q)/im(dp+1,q−1).

(ii) Let X be a smooth projective variety, let L be a line bundle on X, let F be a coherent sheaf
on X and let V ⊂ H0(X,L) be a linear subspace. Then the Koszul cohomology Kp,q(X,F ,L, V )
is defined as

Kp,q(X,F ,L, V ) := Kp,q(
⊕
n∈Z

H0(X,F ⊗ Ln), V ).

If V = H0(X,L), it will be dropped from the notation. Similarly, if F ∼= OX , it will be dropped
from the notation as well.

Next, we will link Koszul cohomology to syzygies.

Definition 2.2. [Gre84, 1.b] Assume that M is a graded Sym(V )-module and has a minimal free
resolution of the form

· · · →
⊕
q≥q1

Sym(V )(−q)⊗W1,q →
⊕
q≥q0

Sym(V )(−q)⊗W0,q →M → 0

where the Wp,q are finite dimensional vector spaces. Then the syzygies of order p and weight q are
defined as Wp,q.

By [Gre84] such a resolution exists if the dimensions of the vector spaces Mq are finite for all q
and if the number of negative q’s where Mq not trivial is finite. Syzygies and the Koszul cohomology
are related by the following theorem.
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Theorem 2.1. [Gre84, Thm. 1.b.4] There is an isomorphism of vector spaces

Kp,q(M,V ) ∼= Wp,p+q.

This is one of the main reasons why Koszul cohomology is interesting. Suppose that X is a
projective variety and consider a very ample line bundle L ∈ Pic(X). Then L determines a map to
the projective space P(H0(X,L)∗) by evaluating global sections. In nice cases, such as in Noether’s
theorem, the image is the projective spectrum of

⊕
n∈Z

H0(X,Ln). Hence, the syzygies of the image

as a closed subscheme of some projective space are described by Koszul cohomology.
The next step is to apply Koszul cohomology and theorem 2.1 to the construction of three

important exact sequences. Let X be a smooth projective variety and let 0→ F1 → F2 → F3 → 0
be a short exact sequence of locally free sheaves of finite rank. Consider an open affine subscheme
Spec(A) ⊂ X on which the sheaves are free and defineMi := Fi|Spec(A). The induced mapM1 →M2

turns SymM2 into a SymM1-module. The definition of the Koszul differential can be adapted to
the map

j+1∧
M1 ⊗ Symi−j−1M2 →

j∧
M1 ⊗ Symi−jM2 →

j−1∧
M1 ⊗ Symi−j+1M2.

This glues into a map

j+1∧
F1 ⊗ Symi−j−1F2 →

j∧
F1 ⊗ Symi−jF2 →

j−1∧
F1 ⊗ Symi−j+1F2

for all 0 < j < i. Composing these maps results in

· · · → Symi−2F2 ⊗
2∧
F1 → Symi−1F2 ⊗F1 → SymiF2 → SymiF3 → 0. (3)

Similarly, the map M∗2 →M∗1 turns SymM∗1 into a SymM∗2 algebra, which yields

j+1∧
M∗2 ⊗ Symi−j−1M∗1 →

j∧
M∗2 ⊗ Symi−jM∗1 →

j−1∧
M∗2 ⊗ Symi−j+1M∗1 .

This glues into

j+1∧
F∗2 ⊗ Symi−j−1F∗1 →

j∧
F∗2 ⊗ Symi−jF∗1 →

j−1∧
F∗2 ⊗ Symi−j+1F∗1 ,

which is dual to

j−1∧
F2 ⊗ Symi−j+1F1 →

j∧
F2 ⊗ Symi−jF1 →

j+1∧
F2 ⊗ Symi−j−1F1.

Therefore, composition yields

· · · →
i−2∧
F2 ⊗ Sym2F1 →

i−1∧
F2 ⊗F1 →

i∧
F2 →

i∧
F3 → 0. (4)

Corollary 2.1.1. The sequences

(3)

· · · → Symi−2F2 ⊗
2∧
F1 → Symi−1F2 ⊗F1 → SymiF2 → SymiF3 → 0

(4)

· · · →
i−2∧
F2 ⊗ Sym2F1 →

i−1∧
F2 ⊗F1 →

i∧
F2 →

i∧
F3 → 0
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are exact.

Proof. The ends of both sequences, i.e.

Symi−1F2 ⊗F1 → SymiF2 → SymiF3 → 0

and
i−1∧
F2 ⊗F1 →

i∧
F2 →

i∧
F3 → 0

are exact by [Eis04, Prop. A2.2] so for the first sequence it suffices to show that

j+1∧
M1 ⊗ Symi−j−1M2

f→
j∧
M1 ⊗ Symi−jM2

g→
j−1∧

M1 ⊗ Symi−j+1M2

is exact for all 0 < j < i. This is equivalent to the exactness of

0→ im(f)→
j∧
M1 ⊗ Symi−jM2 → im(g)→ 0.

Note that im(f) and im(g) are free since the Koszul differential sends free generators to free gen-
erators. Hence, the above sequence is exact if and only if

0→ im(f)⊗ κ(p)→
j∧
M1 ⊗ Symi−jM2 ⊗ κ(p)→ im(g)⊗ κ(p)→ 0

is exact for all p ∈ Spec(A). Define Vi := Mi ⊗ κ(p). Then exactness of the above sequence is
equivalent to the exactness of

j+1∧
V1 ⊗ Symi−j−1V2 →

j∧
V1 ⊗ Symi−jV2 →

j−1∧
V1 ⊗ Symi−j+1V2,

which is equivalent to Ki−j,j(SymV2, V1) = 0. After choosing a suitable basis for V1 and V2 the
injection SymV1 ↪→ SymV2 can be identified with the inclusion C[x1, . . . , xm] ↪→ C[x1, . . . , xn] for
some integers m ≤ n. The minimal free resolution of C[x1, . . . , xn] as a C[x1, . . . , xm]-module has
no syzygies of order p and weight q Wp,q for p 6= q and therefore Kj,i−j(SymV2, V1) ∼= Wj,i = 0 for
0 < j < i by the theorem above. Considering a very similar argument for the second assertion, it
suffices to show that the sequence

j+1∧
V ∗2 ⊗ Symi−j−1V ∗1 →

j∧
V ∗2 ⊗ Symi−jV ∗1 →

j−1∧
V ∗2 ⊗ Symi−j+1V ∗1

is exact. This is equivalent to Kj,i−j(SymV ∗1 , V
∗
2 ) = 0. Choose a suitable basis for V ∗1 and V ∗2 to

identify SymV ∗2 → SymV ∗1 with the projection C[x1, . . . , xn] � C[x1, . . . , xn]/(x1, . . . , xm) for some
integers m ≤ n. Expand this to a minimal free resolution of C[x1, . . . , xn]/(x1, . . . , xm) and note
that the syzygies of order p and weight q W ′p,q are zero for p 6= q. Hence, Kj−i,i(SymV ∗1 , V

∗
2 ) ∼=

W ′j−i,j = 0 for all 0 < j < i by the theorem above.

Now we dualize 0→ F1 → F2 → F3 → 0, apply Symi and dualize again to obtain

0→ SymiF1 → SymiF2 → Symi−1F2 ⊗F3 → Symi−2F2 ⊗
2∧
F3 → · · · (5)

This is still exact since all involved sheaves are locally free.
In his paper [Gre84] Green established multiple methods for calculating Koszul cohomology.

Two of them will be used in the next sections and are therefore stated here.
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Theorem 2.2 (Koszul duality). [Gre84, Thm. 2.c.6] Let X be a smooth projective variety of
dimension n, let L ∈ Pic(X) be a line bundle and let F be a vector bundle on X. Take a base-point
free linear subspace W ⊂ H0(X,L) of dimension dimW = r + 1 and suppose that

Hi(X,F ⊗ Lq−i) = 0 = Hi(X,F ⊗ Lq−i−1)

for all 1 ≤ i ≤ n− 1. Then there is an isomorphism

Kp,q(X,F ,L,W )∗ ∼= Kr−n−p,n+1−q(X,F∗ ⊗ ωX ,L,W ).

Corollary 2.2.1 (Special case of the duality theorem for curves). Let C be a smooth projective
curve of genus g. Then there is an isomorphism

Kp,q(C,ωC)∗ ∼= Kg−2−p,3−q(C,ωC).

Corollary 2.2.2 (Special case of the duality theorem for K3 surfaces). Let X be a K3 surface with
Picard group Pic(X) ∼= Z[L] where L is an ample globally generated line bundle with (L.L) = 4k−2.
Then there is an isomorphism

Kp,q(X,L)∗ ∼= K2k−2−p,3−q(X,L).

The next theorem is sometimes called the Lefschetz theorem or the hyperplane restriction the-
orem.

Theorem 2.3. [Gre84, Thm. 3.b.7] Let X be a smooth projective variety, let L be a line bundle
on X and let Y ∈ |L| be a connected hypersurface. Furthermore, assume that the first cohomology
group H1(X,Lq) vanishes for all q ≥ 0. Then there is an isomorphism

Kp,q(X,L) ∼= Kp,q(Y,L|Y )

for all p, q.

Before we finish the section on Koszul cohomology, we will connect Koszul cohomology to sheaf
cohomology. This discussion follows [Laz89, Prop. 1.3.3]. Let X be a projective variety with a
globally generated line bundle L ∈ Pic(X) and a vector bundle F on X. Define ML as the kernel
of the evaluation map H0(X,L)⊗OX → L, which is surjective since L is globally generated. The
short exact sequence

0→ML → H0(X,L)⊗OX → L → 0

yields the short exact sequence

0→
i∧
ML →

i∧
H0(X,L)⊗OX →

i−1∧
ML ⊗ L → 0 (6)

by taking the i-th exterior power. Indeed, by [Har77, II Ex. 5.16] there is a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fi+1 =

i∧
H0(X,L)⊗OX

such that for all 0 ≤ p ≤ i:

Fp+1/Fp ∼=
i−p∧
ML ⊗

p∧
L.

Note that
p∧
L = 0 for p > 1. Thus, for p > 1 the inclusion Fp ⊂ Fp+1 is an equality. Consequently,

the filtration can be shortened to

0 = F0 ⊂ F1 ⊂
i∧
H0(X,L)⊗OX .
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Using the required isomorphisms, one obtains

F1
∼=

i∧
ML

and hence the cokernel of the inclusion
i∧
ML →

i∧
H0(X,L) ⊗ OX is naturally isomorphic to

i−1∧
ML ⊗ L. Therefore, the sequence

0→
i∧
ML →

i∧
H0(X,L)⊗OX →

i−1∧
ML ⊗ L → 0

is exact. Tensor the sequence (6) with powers of L and with F to obtain the commutative diagram

0

p+1∧
ML ⊗F ⊗ Lq−1

p+1∧
H0(X,L)⊗F ⊗ Lq−1 0

0
p∧
ML ⊗F ⊗ Lq

p∧
H0(X,L)⊗F ⊗ Lq

p−1∧
ML ⊗F ⊗ Lq+1 0

0
p−1∧

H0(X,L)⊗F ⊗ Lq+1

p−2∧
ML ⊗F ⊗ Lq+2

0

with exact rows and columns. Taking global sections of the dashed morphisms induces

p+1∧
H0(L)⊗H0(F ⊗ Lq−1)

p∧
H0(L)⊗H0(F ⊗ Lq)

p−1∧
H0(L)⊗H0(F ⊗ Lq+1),

which is in fact the Koszul complex. Observe that Kp,q(X,F ,L) is naturally isomorphic to

H1(X,
p+1∧
ML ⊗ F ⊗ Lq−1) provided H1(X,F ⊗ Lq−1) = 0. Indeed, taking global sections re-
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sults in

0

H0(
p+1∧
ML ⊗F ⊗ Lq−1)

p+1∧
H0(L)⊗H0(F ⊗ Lq−1) 0

0 H0(
p∧
ML ⊗F ⊗ Lq)

p∧
H0(L)⊗H0(F ⊗ Lq) H0(

p−1∧
ML ⊗F ⊗ Lq+1)

H1(
p+1∧
ML ⊗F ⊗ Lq−1)

p−1∧
H0(L)⊗H0(F ⊗ Lq+1)

0 H0(
p−2∧
ML ⊗F ⊗ Lq+2).

A diagram chase yields natural isomorphisms

Kp,q(X,F ,L) ∼= H0(X,

p∧
ML ⊗F ⊗ Lq)/im(f2) ∼= H1(X,

p+1∧
ML ⊗F ⊗ Lq−1).

This is called the kernel bundle description of Koszul cohomology. Observe that if X is a K3 surface
with Picard group Pic(X) ∼= Z[L] where L is ample, globally generated and (L.L) = 4k − 2, the
cohomology H1(X,OX ⊗ Lq−1) vanishes for all q. Hence, the kernel bundle description gives an
isomorphism

Kp,q(X,L) ∼= H1(X,

p+1∧
ML ⊗ Lq−1).

2.2 Green’s conjecture

In this section it will be argued how Voisin’s theorem implies a partial result of Green’s conjecture.
Furthermore, it will be explained why Noether’s theorem and Petri’s theorem are special cases of
Green’s conjecture. This is the main result of this thesis:

Theorem 2.4 (Voisin). [Voi02, Thm. 1] Let X be a K3 surface with Picard group Pic(X) ∼=
Z[L] where L is an ample globally generated line bundle with (L.L) = 2g − 2 and g = 2k. Then
Kk,1(X,L) = 0.

Suppose that Voisin’s theorem has already been proven. One can show that Kp+1,1(X,L)
injects into H0(X,L)⊗Kp,1(X,L) for all p ≥ 1, see [AN09, Cor. 2.10]. Therefore, Voisin’s theorem
implies Kp,1(X,L) = 0 for all p ≥ k. Now, consider C ∈ |L| and use theorem 2.3. This yields
the vanishing of Kp,1(C,ωC) for all p ≥ k, which is Koszul dual to K2k−p−2,2(C,ωC)∗. Thus, one
obtains Kp′,2(C,ωC) = 0 for all p′ ≤ k − 2. Finally, suppose that Cliff(C) = k − 1. Then Voisin’s
theorem implies the direction ”⇒” in Green’s conjecture. Recall that the direction ”⇐” was proven
by Green and Lazarsfeld.

Lemma 2.5. Let C be as in the discussion above. Then Cliff(C) = k − 1.
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Proof. Note that C is Brill–Noether general by [Laz86]. Thus, [KK89, Thm. 1] implies that
Cliff(C) = gon(C)−2 where gon denotes the gonality. Hence, it is sufficient to show gon(C) = k+1.
Let f : C → P1 be a finite morphism of minimal degree. Then f∗OP1(1) is a g1gon(C). The curve C

admits a g1d if and only if 2d ≥ k + 1 due to Brill–Noether theory. Hence, gon(C) ≥ k + 1. On the
other hand, there is a g1k+1 by the same theorems. Let L be this line bundle. In section 1.3 it was
argued that in this case H0(C,L) is base point free. Therefore, L determines a morphism to P1 of
degree k + 1 and hence gon(C) ≤ k + 1.

The next goal is to use Koszul cohomology to rephrase the classical results of Max Noether and
Petri. In addition, we will see that these results can be viewed as special cases of Green’s conjecture,
which is another motivation for the search of a proof.

Theorem 2.6 (Max Noether). [Ara+85, III §2] Let C be a smooth projective curve which is not
hyperelliptic. Then the canonical ring of C is generated in degree one.

Recall that the canonical ring of a curve C is defined as:

R(C) :=
⊕
n∈N

H0(C,ωnC).

Hence, Noether’s theorem states that for every n ≥ 1 the natural map

SymnH0(C,ωC) � H0(C,ωnC)

is surjective. Writing down the definition of the Koszul cohomology of bidegree (0, q), one sees that
this map is surjective if K0,q(C,ωC) = 0 for all 1 ≤ q ≤ n. On the other hand K0,n(C,ωC) = 0
if the map is surjective. Thus, Noether’s theorem is equivalent to the vanishing of K0,q(C,ωC) for
all q ≥ 1. Observe that K0,1(C,ωC) is always trivial. For q ≥ 3 use the duality theorem to obtain
an isomorphism K0,q(C,ωC) ∼= Kg−2,3−q(C,ωC)∗. Hence, K0,q(C,ωC) vanishes for all q ≥ 3 and
consequently Noether’s theorem can be reformulated in the following way:

Theorem 2.7. Let C be a smooth projective curve which is not hyperelliptic. Then K0,2(C,ωC) = 0.

Remark. Observe that this is just the direction ”⇒” in Green’s conjecture in the case of l = 0.

Another example is provided by Petri’s theorem. If C is not hyperelliptic, the canonical bundle
ωC is very ample [Har77, IV Prop. 5.2]. Hence, it determines a closed embedding ϕωC

: C → Pg−1.
This embedding factors over the projective spectrum of the canonical ring R(C) due to Noether’s
theorem:

C Pg−1

Proj(R(C))

ϕωC

i

The morphism C → Proj(R(C)) is an isomorphism by [21, Tag 01Q1]. It only seems natural to ask
the question of how the ideal sheaf I of the closed immersion i looks like.

Theorem 2.8 (Petri). [Ara+85, III §3] Let C be a canonical curve of genus g ≥ 4. Then the ideal
sheaf I is generated by elements of degree two unless C is trigonal or a plane quintic.

Let a be the kernel of the surjection Sym(H0(C,ωC)) � R(C) and consider the minimal free
resolution of R(C)

· · · →
⊕
q≥q1

Sym(H0(C,ωC))(−q)⊗ U1,q
f→

⊕
q≥q0

Sym(H0(C,ωC))(−q)⊗ U0,q → R(C)→ 0.

https://stacks.math.columbia.edu/tag/01Q1
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From the minimality of this resolution it follows that U0,0
∼= C and U0,q = 0 for all q 6= 0. Hence,

the image of f is nothing but the ideal a. Now, consider the minimal free resolution of a:

· · · →
⊕
q≥q1

Sym(H0(C,ωC))(−q)⊗W1,q →
⊕
q≥q0

Sym(H0(C,ωC))(−q)⊗W0,q → a→ 0

Since both resolutions are minimal, they should coincide after a shift: Up,q ∼= Wp−1,q for all p and
q. Thus, the ideal a is generated by elements of degree two if and only if W0,q

∼= U1,q = 0 for q = 1
and for all q ≥ 3. The second vector space is isomorphic to K1,q−1(C,ωC) by theorem 2.1. Hence,
Petri’s theorem translates to K1,q(C,ωC) = 0 for q = 0 and q ≥ 2. The vanishing for q = 0 is
obvious. For q ≥ 3 one could argue similarly as in the reformulation of Noether’s theorem. We
conclude that Petri’s theorem can be rephrased as:

Theorem 2.9. Let C be a canonical curve of genus g ≥ 4. Then K1,2(C,ωC) = 0 unless C is
trigonal or a plane quintic.

Remark. One can show that curves of genus g ≤ 2 are hyperelliptic and curves of genus g = 3 are
hyperelliptic or trigonal. Furthermore, it is known that curves with Clifford index equal to one are
exactly those curves that are trigonal or plane quintics, see [Eis05, 9A]. Thus, the condition g ≥ 4
can be replaced with Cliff(C) > 1 and hence Petri’s theorem corresponds to the direction ”⇒” in
Green’s conjecture in the case of l = 1.

2.3 Proof of the known direction in Green’s conjecture

As already mentioned the direction ”⇐” in Green’s conjecture was proven in a joint appendix with
Lazarsfeld in Greens’s paper [Gre84]. Their proof used the following theorem:

Theorem 2.10. [Gre84, Thm. appendix] Let X be a smooth projective variety and let L, M1, M2

be line bundles on X such that L ∼= M1 ⊗M2. Assume that h0(X,M1) and h0(X,M2) are both
larger than one and define ri := h0(X,Mi)− 1. Then Kr1+r2−1,1(X,L) 6= 0.

Proof. First, choose two global sections di ∈ H0(X,Mi). The injectionsM∗i ∼= OX(−Z(di)) ↪→ OX
give rise to surjections H0(X,L)∗ � H0(X,L ⊗Mi)

∗. Define

D1 := ker(H0(X,L)∗ � H0(X,L ⊗M∗2 ∼=M1)∗) ⊂ Cr+1,

D2 := ker(H0(X,L)∗ � H0(X,L ⊗M∗1 ∼=M2)∗) ⊂ Cr+1

and choose a basis s0, . . . , sr for H0(X,L) with dual basis e0, . . . , er such that

(i) e1, . . . , er−r1 is a basis for D1,

(ii) er2+1, . . . , er is a basis for D2 and

(iii) er2+1, . . . , er−r1 is a basis for D1 ∩D2.

Consequently, one obtains

(i) H0(X,M1
∼= L ⊗M∗2) = 〈s0, sr−r1+1, . . . , sr〉

(ii) H0(X,M2
∼= L ⊗M∗1) = 〈s0, . . . , sr2〉.
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Now, define

ι :=

r−r1∑
i=1

ei ⊗ si,

s :=

r∑
i=0

ei ⊗ si,

α := ι ∧ er2+1 ∧ · · · ∧ er−r1 =

r2∑
i=1

ei ∧ er2+1 ∧ · · · ∧ er−r1 ⊗ si

and consider

s ∧ α =

r∑
j=0

r2∑
i=1

ej ∧ ei ∧ er2+1 ∧ · · · ∧ er−r1 ⊗ (sj ⊗ si)

=

r2∑
i=1

e0 ∧ ei ∧ er2+1 ∧ · · · ∧ er−r1 ⊗ (s0 ⊗ si)

+

r2∑
j=1

r2∑
i=1

ej ∧ ei ∧ er2+1 ∧ · · · ∧ er−r1 ⊗ (sj ⊗ si)

+

r∑
j=r−r1+1

r2∑
i=1

ej ∧ ei ∧ er2+1 ∧ · · · ∧ er−r1 ⊗ (sj ⊗ si).

Note that in the second last sum all summands occur twice but with different signs. Ergo,

s ∧ α =

r2∑
i=1

e0 ∧ ei ∧ er2+1 ∧ · · · ∧ er−r1 ⊗ (s0 ⊗ si)

+

r∑
j=r−r1+1

r2∑
i=1

ej ∧ ei ∧ er2+1 ∧ · · · ∧ er−r1 ⊗ (sj ⊗ si).

The tensor products sj ⊗ si that occur in this sum are contained in

H0(L ⊗M∗2 ⊗ L⊗M∗1) ∼= H0(L)

due to the range of the indices. Thus,

s ∧ α ∈
r−r1−r2+2∧

H0(X,L)∗ ⊗H0(X,L).

Recall that there are isomorphisms

m∧
H0(X,L)∗ ∼=

r+1−m∧
H0(X,L)

for all 0 ≤ m ≤ r + 1, using the given basis. Explicit calculations will show that the composite

m∧
H0(X,L)∗ ⊗H0(X,L)

∼→
r+1−m∧

H0(X,L)⊗H0(X,L)

d→
r−m∧

H0(X,L)⊗H0(X,L2)
∼→

m+1∧
H0(X,L)∗ ⊗H0(X,L2)
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is, up to scaling, the map s ∧ − for all 0 ≤ m ≤ r + 1. Here, d is the Koszul differential.
Hence, the fact that s ∧ (s ∧ α) = 0 implies that s ∧ α yields an element in Kr1+r2−1,1(X,L). If
s∧α ∈ Kr1+r2−1,1(X,L) is not trivial, the assertion follows. Suppose in contrary that s∧α = s∧β

for some β ∈
r−r1−r2+1∧

H0(X,L)∗. Consequently,

s ∧ ej ∧ β = ±s ∧ α ∧ ej = 0

for all r2 + 1 ≤ j ≤ r − r1. On the other hand

s ∧ ej ∧ β =

r∑
i=0

ei ∧ ej ∧ β ⊗ si

where the si are all linearly independent. Hence, ei ∧ ej ∧ β = 0 for all i and for all r2 + 1 ≤
j ≤ r − r1. The element ej ∧ β lies in the (r − r1 − r2 + 2)-nd exterior power of H0(X,L)∗ where
r− r1− r2 +2 < r+1. Therefore, ej ∧β = 0 for all r2 +1 ≤ j ≤ r. The element β can be written as
a linear combination of elementary wedge products where each elementary wedge product consists
of a, up to permutation, unique wedge of (r− r1 − r2 + 1)-many basis vectors. Since ej ∧ β = 0 for
all r2 + 1 ≤ j ≤ r − r1, ej has to participate in each product for all r2 + 1 ≤ j ≤ r − r1. Thus,
β can be written as β = c ∧ er2+1 ∧ · · · ∧ er−r1 . Now, write c as a linear combination of the basis
e0, . . . , er and plug in all definitions in the equation s ∧ α = s ∧ c ∧ er2 ∧ · · · ∧ er−r1 . After a very
lengthy calculation this yields s ∧ α = 0, which is absurd.

Corollary 2.10.1. [Gre84] Let C be a smooth projective curve over a field of characteristic zero.
Suppose that there is an l ≥ 0 such that Kp,2(C,ωC) vanishes for all p ≤ l. Then Cliff(C) > l.

Proof. We will prove the contraposition. Suppose that Cliff(C) ≤ l and let L be one of the line
bundles with the smallest Clifford index that satisfy h0(L) = r + 1 ≥ 2 and h1(L) ≥ 2. Let d be
the degree of L. Thus, by assumption d − 2r ≤ l. Define M := ωC ⊗ L∗. Then Serre duality
implies h0(M) = h1(L) ≥ 2 and h1(M) = h0(L) ≥ 2. Note that by the Riemann–Roch formula
h1(L) = r− d+ g. Hence, the above theorem states Kg+2r−d−2,1(C,ωC) 6= 0. Koszul duality yields
Kg+2r−d−2,1(C,ωC) ∼= Kd−2r,2(C,ωC)∗ so Kd−2r,2(C,ωC) 6= 0.

2.4 Geometric syzygy conjecture

Recall that Voisin’s theorem predicts the vanishing of Kl,1(C,ωC) for all l ≥ k. The geometric
syzygy conjecture on the other hand is about the Koszul cohomology group Kk−1,1(C,ωC). Since
we do not expect this group to vanish, we are interested in finding a basis with certain properties.
The considered property is the rank of a linear syzygy.

Definition 2.3. [Kem19] Let X be a projective variety and let L be a very ample line bundle on
X. Consider a linear syzygy α ∈ Kp,1(X,L). The rank of α is defined as the dimension of the
minimal linear subspace V ⊂ H0(X,L) such that α is an element in Kp,1(X,L, V ).

Assume α ∈ Kp,1(X,L) has rank k. By definition, there is a syzygy α′ ∈ Kp,1(X,L, V ) that it
mapped to α under Kp,1(X,L, V )→ Kp,1(X,L) where V ⊂ H0(X,L) is a k-dimensional subspace.
The map Kp,1(X,L, V )→ Kp,1(X,L) is induced by

p+1∧
V

p∧
V ⊗H0(X,L)

p−1∧
V ⊗H0(X,L2)

p+1∧
H0(X,L)

p∧
H0(X,L)⊗H0(X,L)

p−1∧
H0(X,L)⊗H0(X,L2).

dp,1



21

If the rank k of α and therefore the dimension of V is smaller than p, then Kp,1(X,L, V ) = 0 and
thus α′ and α have to be zero. If one assumes k = p, the Koszul cohomology group Kp,1(X,L, V )
equals the kernel of the Koszul differential dp,1. Choose a basis v1, . . . , vp of V which induces

the only basis element v1 ∧ · · · ∧ vp of
p∧
V . Because

p∧
V is one-dimensional, every element in

p∧
V ⊗H0(X,L) can be expressed as v1∧· · ·∧vp⊗v with v ∈ H0(X,L) being an arbitrary element.

The Koszul differential sends this element to

(−1)p

p

p∑
i=1

(−1)iv1 ∧ · · · ∧ v̂i ∧ · · · ∧ vp ⊗ (vi ⊗ v)

where vi ⊗ v is viewed as an element in H0(X,L2). Since the elements v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vp are
linearly independent, the only way the expression above can become zero is that vi ⊗ v is zero for
all 1 ≤ i ≤ p. Take an open affine subscheme SpecA ⊂ X on which the line bundle L becomes

trivial. Let M be the corresponding A module and denote by ϕ : M
∼=→ A the trivialization. Then

vi ⊗ v beeing zero implies
ϕ(vi|Spec(A)) · ϕ(v|Spec(A)) = 0.

If X is integral, this implies that vi|Spec(A) = 0 or v|Spec(A) = 0. The zero locus is closed so vi = 0
or v = 0 and hence dp,1 is injective. Ergo, the linear syzygy α has rank larger or equal to p + 1.
On the other hand syzygies of rank p + 1 or p + 2 have a geometric meaning: If there is a syzygy
of rank p + 1, then X lies on a rational normal scroll and syzygies of rank p + 2 come from linear
sections of Grassmannians, see [Bot07] and [AN07]. Consequently, syzygies of rank p + 1 or p + 2
are called geometric. This explains the word ”geometric” in the following conjecture:

Conjecture 2.11 (Geometric syzygy conjecture in even genus). [Kem20, Cor. 0.4] Let C be a
general curve of genus g = 2k. Then Kk−1,1(C,ωC) is generated by geometric syzygies of rank k
which come from Kk−1,1(C,ωC , H

0(C,ωC ⊗OC(−A))) with A ∈W 1
k+1(C).

Recall that W r
d (C) is defined as the set of divisors D on C with degD = d and dim |D| ≥ r, see

[Ara+85, IV]. The result we will actually prove is:

Theorem 2.12. [Kem20, Thm. 0.2] Let X be a K3 surface with Picard group Pic(X) ∼= Z[L] where
L is an ample globally generated line bundle with (L.L) = 4k − 2. Let E be the Lazarsfeld–Mukai
bundle associated to a g1k+1 on C ∈ |L|. Take 0 6= s ∈ H0(X, E), then Kk−1,1(X,L, H0(X,L⊗IZ(s)))
is a one-dimensional subspace of Kk−1,1(X,L) and the morphism

ψ : P(H0(X, E))→ P(Kk−1,1(X,L))

[s] 7→ Kk−1,1(X,L, H0(X,L ⊗ IZ(s)))

is the Veronese embedding of degree k − 2, i.e. ψ induces an isomorphism

Symk−2H0(X, E)
∼→ Kk−1,1(X,L).

For the argument of how this theorem implies the geometric syzygy conjecture in even genus we
refer to [Kem20].
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3 Universal secant bundles and proof of Voisin’s theorem

The goal of this section will be to present the universal construction of the secant bundles Γ and S
and to prove Voisin’s theorem. Those bundles will fit into an exact sequence

0→ S → π∗ML → Γ→ 0.

This sequence will be used to prove the vanishing of H1(X,
k+1∧
ML) ∼= Kk,1(X,L).

Before we start the actual construction of Γ and S we will construct the secant sheaves Γ′s and
S ′s. The parametrization of these sheaves along s ∈ H0(X, E) will give Γ and S after passing to a
blow-up. In addition, the secant sheaves and their relation to the secant bundles will come up in
the application to the geometric syzygy conjecture. The whole section follows [Kem20]. From now
on we work in the setting introduced and examined in section 1.3.

3.1 Secant sheaves

Take a global section 0 6= s ∈ H0(X, E). The closed subscheme Z(s) ⊂ X consists of finitely many

points in X with multiplicities. Multiplication with the section s defines an injection OX
s
↪→ E .

Composing with the map E ∧s→ E ∧ E yields an exact sequence

0→ OX
s→ E ∧s→ E ∧ E .

Using lemma 1.9, we have an isomorphism E ∧ E = det(E) ∼= L. Note that under this isomorphism
the image of ∧s is isomorphic to L ⊗ IZ(s) ↪→ L. Thus, the sequence

0→ OX
s→ E ∧s→ L⊗ IZ(s) → 0 (7)

is exact. By the commutative diagram

H0(X, E)⊗OX H0(X, IZ(s) ⊗ L)⊗OX

E L ⊗ IZ(s)

ev

the evaluation map ev has to be surjective. Hence, IZ(s) ⊗ L is globally generated. Consider the
exact sequence

0→ L⊗ IZ(s) → L → L|Z(s) → 0. (8)

Applying the global section functor, we obtain a map

Ws := H0(X,L)/H0(X,L ⊗ IZ(s))→ H0(X,L|Z(s)).

Definition 3.1. [Kem20] The secant sheaves associated to Z(s) are defined as

Γ′s := ker(Ws ⊗OX → H0(X,L|Z(s))⊗OX → L|Z(s)),

S ′s := ker(H0(X,L ⊗ IZ(s))⊗OX → L⊗ IZ(s)).

Remark. Take a global section 0 6= t ∈ H0(X,L ⊗ IZ(s)) and consider its zero locus Z(t). Since
H0(X,L⊗IZ(s)) is a subspace of H0(X,L), the zero locus of t is an effective divisor on X linearly
equivalent to C. Furthermore, the zero locus of t contains Z(s) as a closed subscheme so elements of
H0(X,L⊗IZ(s)) are equations for curves in X which are linearly equivalent to C and contain Z(s).

Since L is globally generated, it is base point free and determines a morphism X → P(H0(X,L)∗).
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Now, elements t ∈ H0(X,L⊗IZ(s)) yield hyperplanes in P(H0(X,L)∗) that contain Z(s). Similarly,
a hyperplane that contains Z(s) comes from some non-zero global section t ∈ H0(X,L⊗IZ(s)), up to
multiplication with a scalar. Hence, we get a correspondence between the hyperplanes that contain
Z(s) and elements in P(H0(X,L ⊗ IZ(s))). Note that every hyperplane intersects X non-trivially
since there is no global section of L with empty zero locus. Now, take a point x ∈ X and consider the
fibre of S ′s over x. In this case the fibre is the kernel of the map H0(X,L⊗IZ(s))→ L⊗IZ(s)⊗κ(x).
If we suppose that x does not lie in Z(s) this simplifies to H0(X,L⊗IZ(s))→ κ(x). Consequently,
the kernel of this map parametrizes those hyperplanes that contain Z(s) and x. On the other hand,
suppose that x is contained in Z(s). In this case the kernel consists of global sections that have
a zero of order at least two at x and hence parametrizes the hyperplanes that intersect X in x
tangentially. This justifies the name secant bundle for S ′s.

Consider the diagram

0 0 0

0 S ′s H0(X,L ⊗ IZ(s))⊗OX L ⊗ IZ(s) 0

0 ML H0(X,L)⊗OX L 0

0 Γ′s Ws ⊗OX L|Z(s) 0

0 0 0.

All rows and the middle and the right column are short exact sequences. The dashed maps are
obtained by the universal property of the kernels and therefore this diagram is commutative. The
3× 3 lemma implies the exactness of the left column.

The main issue with this construction is that Γ′s is not locally free since Z(s) is not a divisor.
This could be resolved by blowing up X along Z(s) turning Z(s) into the exceptional divisor. In
addition there is no natural choice for s ∈ H0(X, E) so we would like to work with all sections s
simultaneously to obtain a parametrization of Γ′s and S ′s over all non-zero s ∈ H0(X, E). This leads
to the universal construction of the secant bundles.

3.2 Secant bundles

This section follows [Kem20]. Recall that h0(X, E) = k+2 and hence P := P(H0(X, E)) is isomorphic
to Pk+1. Consider the product X × P with the two projections p : X × P → X and q : X × P → P
and consider the closed subscheme Z := {(x, s)|s(x) = 0} ⊂ X × P. Note that the fibre of q|Z over
[s] ∈ P is Z(s) and thus Z is a parameterization of the subschemes Z(s). Hence, the projection q|Z
is quasi finite, projective and, by [Har77, III Ex. 11.2], also finite. The Lazarsfeld–Mukai bundle E
is globally generated thus Z is isomorphic to the projective bundle of the kernel of the evaluation
map H0(X, E) ⊗ OX → E . Ergo, Z is smooth. Using miracle flatness [21, Tag 00R4], we see that
Z → P is flat since both schemes are smooth and the morphism is finite. Define M := p∗ML.

Then Künneth yields H1(X×P,
k+1∧
M) ∼= H1(X,

k+1∧
ML) and thus proving Voisin’s theorem only

requires showing that the first vector space vanishes.
Apply the Künneth formula to get H0(X × P, E �OP(1)) ∼= Hom(H0(X, E), H0(X, E)). Multi-

plying with the element corresponding to id ∈ Hom(H0(X, E), H0(X, E)) gives rise to an injection

0→ OX �OP(−2)
·id→ E �OP(−1).

https://stacks.math.columbia.edu/tag/00R4
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Compare this to (7). By a similar argument, the injection has cokernel p∗L ⊗ IZ . Therefore, we
obtain an exact sequence

0→ OX �OP(−2)
·id→ E �OP(−1)→ p∗L ⊗ IZ → 0. (9)

Now, let π : B → X × P be the blow-up of the closed subscheme Z ⊂ X × P and let D be the
exceptional divisor. Then some basic facts state that [Kem20]

(i) π∗OB ∼= OX×P

(ii) π∗ID ∼= IZ

(iii) Riπ∗OB = 0 = Riπ∗ID for all i > 0.

Moreover, by setting p′ and q′ as the composites in the diagram

B

X × P P

X,

π

p′

q′

p

q

one gets the following isomorphisms due to the projection formula:

(iv) q′∗(p
′∗L ⊗ ID) ∼= q∗(p

∗L ⊗ IZ)

(v) q′∗p
′∗L ∼= q∗p

∗L.

Note that the fibre dimensions of q′ and p′ are constant. This implies that these morphisms are flat
due to miracle flatness [21, Tag 00R4].

Take the ideal-sequence of the exceptional divisor D and twist it with the line bundle p′∗L to
get

0→ p′∗L ⊗ ID → p′∗L → p′∗L|D → 0.

Now, apply the pushforward q′∗ and define W := coker(q′∗(p
′∗L ⊗ ID)→ q′∗p

′∗L).

Lemma 3.1. [Kem20, Lem. 1.1] The above defined sheaf W ∈ Coh(P) is locally free of rank k.

Proof. Consider the sequence

0→ p∗L ⊗ IZ → p∗L → p∗L|Z → 0

and apply q∗ to get

0→ q∗(p
∗L ⊗ IZ)→ q∗p

∗L → q∗(p
∗L|Z)→ R1q∗(p

∗L ⊗ IZ)→ R1q∗p
∗L.

Note that
R1q∗p

∗L ∼= H1(X,L)⊗OP = 0.

By construction, W participates in the short exact sequence

0→W → q∗(p
∗L|Z)→ R1q∗(p

∗L ⊗ IZ)→ R1q∗p
∗L = 0

and therefore W is locally free of rank k if q∗(p
∗L|Z) and R1q∗(p

∗L ⊗ IZ) are locally free of rank
k + 1 and 1. To use Grauert’s theorem observe that the morphism q : X × P→ P is projective.

https://stacks.math.columbia.edu/tag/00R4
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(i) The line bundle p∗L|Z ∈ Pic(Z) is flat over P since q|Z : Z → P is a flat morphism. The fibre
(X × P)[s] is isomorphic to X and p∗L|Z |(X×P)[s] ∼= L|Z(s)

∼= OZ(s). Therefore,

h0((X × P)[s], p
∗L|Z |(X×P)[s]) = h0(X,L|Z(s)) = h0(X,OZ(s)) = k + 1

for all 0 6= s ∈ H0(X, E). By [Har77, III Thm. 12.8], the function P→ N, y 7→ h0(y, p∗L|Z |(X×P)y )
is upper semicontinuous ergo it is the constant function with value k + 1.

(ii) The line bundle p∗L is flat over P since q is a flat morphism. The ideal sheaf IZ sits in the
short exact sequence 0→ IZ → OX×P → OZ → 0 where the two (non-trivial) sheaves on the right
hand side are flat over P. Hence, IZ is flat over P as well. Tensor products of flat sheaves are flat,
so p∗L ⊗ IZ is flat over P. Using the short exact sequence (7)

0→ OX → E → IZ(s) ⊗ L → 0

together with lemma 1.9, one sees that H1(X,L ⊗ IZ(s)) ∼= H2(X,OX)
SD∼= H0(X,OX). Ergo,

h1((X × P)[s], (L ⊗ IZ)|(X×P)[s]) = 1 for all 0 6= s ∈ H0(X, E). Conclude similarly to the above
argument.

Remark. (i) The short exact sequence

0→ L⊗ IZ(s) → L → L|Z(s) → 0

yields

0→ H0(X,L ⊗ IZ(s))→ H0(X,L)→ H0(X,L|Z(s))→ H1(X,L ⊗ IZ(s))→ 0.

In the proof above it was shown that h0(X,L|Z(s)) and h1(X,L ⊗ IZ(s)) are independent of s ∈
H0(X, E). This implies that h0(X,L⊗IZ(s)) does not depend on s ∈ H0(X, E) either and therefore
Grauert’s theorem implies that q∗(p

∗L ⊗ IZ) is locally free and that q∗(p
∗L ⊗ IZ) ⊗ κ([s]) ∼=

H0(X,L ⊗ IZ(s)) for all 0 6= s ∈ H0(X, E).

(ii) Consider the short exact sequence

0→ q∗(p
∗L ⊗ IZ)→ q∗p

∗L → W → 0

and take the fibre over a closed point [s] ∈ P to get

0→ H0(X,L ⊗ IZ(s))→ H0(X,L)→W ⊗ κ([s])→ 0.

It follows that W ⊗ κ([s]) ∼= Ws and therefore W parametrizes the vector spaces Ws.

Lemma 3.2. [Kem20] The canonical maps

(i) q′∗q′∗(p
′∗L ⊗ ID) � p′∗L ⊗ ID and

(ii) q′∗q′∗p
′∗L� p′∗L are surjective.

(iii) Moreover, the kernel of q′∗q′∗p
′∗L� p′∗L is isomorphic to π∗M.
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Proof. (i) Consider the canonical map q∗q∗(p
∗L⊗ IZ)→ p∗L⊗ IZ and restrict it to a closed fibre

(X × P)[s] ∼= X. The obtained map can be identified with the evaluation homomorphism

H0(X,L ⊗ IZ(s))⊗OX � L ⊗ IZ(s)

by the previous remark. The surjectivity comes from the fact that L⊗ IZ(s) is globally generated.
Hence, q∗q∗(p

∗L ⊗ IZ) → p∗L ⊗ IZ is surjective on all closed fibres and thus surjective itself.
Applying π∗ preserves surjectivity and yields q′∗q′∗(p

′∗L⊗ π∗IZ) � p′∗L⊗ π∗IZ . Pulling back the
ideal sheaf sequence of Z results in

π∗IZ → OB → OD → 0,

which shows that the natural map π∗IZ � ID is surjective. Composing these two surjections yields
the desired one.

(ii) Since L is globally generated, the pull-back p′∗L is globally generated as well and [Har77, III
Thm. 8.8] implies that q′∗q′∗p

′∗L� p′∗L is surjective.

(iii) Note that there are canonical isomorphism q′∗q′∗p
′∗L ∼= q′∗(H0(X,L)⊗OP) ∼= H0(X,L)⊗OB .

Apply p′∗, which is flat, to

0→ML → H0(X,L)⊗OX
ev→ L → 0

to get
0→ π∗M→ H0(X,L)⊗OB

ev→ p′∗L → 0.

Under the canonical isomorphism q′∗q′∗p
′∗L ∼= H0(X,L)⊗OB the map ev becomes the natural map

q′∗q′∗p
′∗L� p′∗L.

By construction of W, there is a short exact sequence

0→ q′∗(p
′∗L ⊗ ID)→ q′∗p

′∗L → W → 0.

Apply q′∗ to obtain
0→ q′∗q′∗(p

′∗L ⊗ ID)→ q′∗q′∗p
′∗L → q′∗W → 0.

Note that the left-exactness is preserved since q′ is flat. This sequence fits into the commutative
diagram with exact rows:

0 q′∗q′∗(p
′∗L ⊗ ID) q′∗q′∗p

′∗L q′∗W 0

0 p′∗L ⊗ ID p′∗L p′∗L|D 0

The left vertical map and the middle vertical map are the canonical ones and considering the lemma
above they are surjective. The dashed map exists by the universal property of the cokernel and is
surjective because the middle vertical map is surjective.

Definition 3.2. [Kem20] The secant bundles Γ and S are defined as the kernel of

(i) the dashed map in the above diagram: Γ := ker(q′∗W � q′∗L|D)

(ii) the left vertical map in the above diagram: S := ker(q′∗q′∗(p
′∗L ⊗ ID) � p′∗L ⊗ ID).
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Note that Γ and S are locally free since D is a divisor. Furthermore, observe that Γ has rank k
because W has rank k + 1. The secant bundles fit into the commutative diagram

0 0 0

0 S q′∗q′∗(p
′∗L ⊗ ID) p′∗L ⊗ ID 0

0 π∗M q′∗q′∗p
′∗L p′∗L 0

0 Γ q′∗W p′∗L|D 0

0 0 0.

ev

The dashed maps exist by the universal property of the kernel and by the 3×3 lemma the sequence

0→ S → π∗M→ Γ→ 0

is exact. Applying the (k + 1)-th exterior power yields the long exact sequence

· · · →
k−1∧

π∗M⊗ Sym2S →
k∧
π∗M⊗S →

k+1∧
π∗M→

k+1∧
Γ = 0. (10)

3.3 Proof of Voisin’s theorem

Recall that the goal is to prove the vanishing of H1(X×P,
k+1∧
M). Theorem 1.2 combined with the

projection formula yields an isomorphism H1(B,
k+1∧

π∗M) ∼= H1(X × P,
k+1∧
M). The long exact

sequence (10)

· · · fk−2→
k−1∧

π∗M⊗ Sym2S fk−1→
k∧
π∗M⊗S fk→

k+1∧
π∗M→ 0

gives rise to the short exact sequence

0→ ker(fk)→
k∧
π∗M⊗S fk→

k+1∧
π∗M→ 0.

Taking cohomology results in

H1(B,

k∧
π∗M⊗S)→ H1(B,

k+1∧
π∗M)→ H2(B, ker(fk)).

Thus, it suffices to show that H1(B,
k∧
π∗M⊗S) = 0 = H2(B, ker(fk)). Similarly, consider

0→ ker(fk−1)→
k−1∧

π∗M⊗ Sym2S fk−1→ ker(fk)→ 0

and apply Hi:

H2(B,

k−1∧
π∗M⊗ Sym2S)→ H2(B, ker(fk))→ H3(B, ker(fk−1))
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Hence, H2(B, ker(fk)) = 0 if H2(B,
k−1∧

π∗M⊗ Sym2S) = 0 = H3(B, ker(fk−1)).
By continuing this inductively, one concludes that Voisin’s theorem holds true if

Hi(B,

k+1−i∧
π∗M⊗ SymiS) = 0

for 1 ≤ i ≤ k + 1.
To simplify the notation define G := q∗q∗(p

∗L ⊗ IZ).

Lemma 3.3. [Kem20, Lem. 1.2] With G defined as above the following holds true:

(i) Hk+1(X × P,Symk+1G) = 0

(ii) there is a natural isomorphism Hk(X × P,Symk+1G) ∼= SymkH0(X, E)

Proof. Apply q∗ to the exact sequence (9) to get

0→ q∗(OX �OP(−2))→ q∗(E �OP(−1))→ q∗(p
∗L ⊗ IZ)→ R1q∗(OX �OP(−2)).

The projection formula yields the isomorphisms

(i) R1q∗(OX �OP(−2)) ∼= H1(X,OX)⊗OP(−2) = 0

(ii) q∗(OX �OP(−2)) ∼= OP(−2)

(iii) q∗(E �OP(−1)) ∼= H0(X, E)⊗OP(−1).

Thus, the above sequence can be rewritten as

0→ OP(−2)→ H0(X, E)⊗OP(−1)→ q∗(p
∗L ⊗ IZ)→ 0.

Applying q∗ is exact since q is a flat morphism. Hence, we get the exact sequence

0→ q∗OP(−2)→ H0(X, E)⊗ q∗OP(−1)→ G → 0. (11)

By applying the (k + 1)-th symmetric product, one obtains the short exact sequence

0→ SymkH0(X, E)⊗ q∗OP(−k − 2)→ Symk+1H0(X, E)⊗ q∗OP(−k − 1)→ Symk+1G → 0.

For simplicity define Vi := SymiH0(X, E). Therefore, taking cohomology results in

Vk+1 ⊗Hk(q∗OP(−k − 1))→ Hk(Symk+1G)→ Vk ⊗Hk+1(q∗OP(−k − 2))

→Vk+1 ⊗Hk+1(q∗OP(−k − 1))→ Hk+1(Symk+1G)→ Vk ⊗Hk+2(q∗OP(−k − 2)).

By exactness of this sequence, it suffices to prove

(1) Hk(X × P, q∗OP(−k − 1)) = 0

(2) Hk+1(X × P, q∗OP(−k − 2)) ∼= C

(3) Hk+1(X × P, q∗OP(−k − 1)) = 0

(4) Hk+2(X × P, q∗OP(−k − 2)) = 0.

These assertions are direct consequences of the Künneth formula.

Lemma 3.4. [Kem20, Lem. 1.3] There is a natural isomorphism

Hk(X × P,SymkG ⊗ p∗L ⊗ IZ) ∼= SymkH0(X, E).
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Proof. Taking the k-th symmetric power of sequence (11) and tensoring it with p∗L⊗IZ results in

0→ (Vk−1 ⊗ L�OP(−k − 1))⊗ IZ → (Vk ⊗ L�OP(−k))⊗ IZ → SymkG ⊗ p∗L ⊗ IZ → 0

where Vi := SymiH0(X, E). Note that left-exactness is preserved since tensoring an injection
between two locally free sheaves with an ideal sheaf corresponds locally to restricting the injection
An ↪→ Am to an ↪→ am, which is still injective (here, Spec(A) ⊂ X × P is an open affine subscheme
and a is the restriction of IZ to Spec(A)). Applying cohomology yields

Vk−1 ⊗Hk((L�OP(−k − 1))⊗ IZ)→ Vk ⊗Hk((L�OP(−k))⊗ IZ)

→Hk(SymkG ⊗ p∗L ⊗ IZ)→ Vk−1 ⊗Hk+1((L�OP(−k − 1))⊗ IZ).

Ergo, it is enough to prove

(i) Hk(X × P, (L�OP(−k − 1))⊗ IZ) = 0

(ii) Hk(X × P, (L�OP(−k))⊗ IZ) ∼= C

(iii) Hk+1(X × P, (L�OP(−k − 1))⊗ IZ) = 0.

For the vanishings in (i) and (iii) take sequence (9) and twist it by q∗OP(−k − 1) to get

0→ OX �OP(−k − 3)
·id→ E �OP(−k − 2)→ L�OP(−k − 1)⊗ IZ → 0.

Using the Künneth formula yields

(1) Hk(X × P, E �OP(−k − 2)) = 0

(2) Hk+1(X × P,OX �OP(−k − 3)) ∼= H0(X, E)

(3) Hk+1(X × P, E �OP(−k − 2)) ∼= H0(X, E)

(4) Hk+2(X × P,OX �OP(−k − 3)) = 0.

Observe that by construction the map

Hk+1(X × P,OX �OP(−k − 3))→ Hk+1(X × P, E �OP(−k − 2))

can be identified with id : H0(X, E) → H0(X, E). Thus, taking cohomology of the short exact
sequence above yields

0→ Hk((L�OP(−k − 1))⊗ IZ)→ H0(X, E)
id→ H0(X, E)→ Hk+1((L�OP(−k − 1))⊗ IZ)→ 0.

For the isomorphism in (ii) consider the sequence (9) twisted by q∗OP(−k):

0→ OX �OP(−k − 2)
·id→ E �OP(−k − 1)→ (L�OP(−k))⊗ IZ → 0

Applying Künneth, one sees thatHi(X×P, E�OP(−k−1)) = 0 for all i. Consequently, the boundary
map Hk(X ×P, (L�OP(−k))⊗IZ)

∼→ Hk+1(X ×P,OX �OP(−k− 2)) is an isomorphism and the
latter vector space is naturally isomorphic to C due to Künneth’s formula and Serre duality.

Lemma 3.5. [Kem20, Lem. 1.4] The canonical map G := q∗q∗(p
∗L⊗ IZ)→ p∗L⊗ IZ induces an

isomorphism
Hk(SymkG ⊗ G)

∼→ Hk(SymkG ⊗ p∗L ⊗ IZ).
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Proof. The proof will show that the vector spaces Hk(SymkG ⊗ G) and Hk(SymkG ⊗ p∗L ⊗ IZ)
are both naturally isomorphic to SymkH0(X, E). Composition yields a natural endomorphism of
SymkH0(X, E) which has to be the identity. Due to lemma 3.4, it is already known that there is
a natural isomorphism Hk(SymkG ⊗ p∗L ⊗ IZ) ∼= SymkH0(X, E). Hence, it suffices to show the
other isomorphism. Twist (11) by q∗OP(−k − 1) to get

0→ q∗OP(−k − 3)→ H0(X, E)⊗ q∗OP(−k − 2)→ G ⊗ q∗OP(−k − 1)→ 0.

Künneth’s formula yields the isomorphisms

(i) Hk(X × P, q∗OP(−k − 2)) = 0

(ii) Hk+1(X × P, q∗OP(−k − 3)) ∼= H0(X, E)

(iii) Hk+1(X × P, q∗OP(−k − 2)) ∼= C

(iv) Hk+2(X × P, q∗OP(−k − 3)) = 0.

Thus, taking cohomology of the above short exact sequence results in

0→ Hk(G ⊗ q∗OP(−k − 1))→ H0(X, E)
id→ H0(X, E)→ Hk+1(G ⊗ q∗OP(−k − 1))→ 0

and we obtain the two vanishings

Hk(X × P,G ⊗ q∗OP(−k − 1)) = 0 = Hk+1(X × P,G ⊗ q∗OP(−k − 1)).

Now, take the k-th symmetric power of (11) and tensor it with G to get

0→ Vk−1 ⊗ G ⊗ q∗OP(−k − 1)→ Vk ⊗ G ⊗ q∗OP(−k)→ SymkG ⊗ G → 0

where Vi := SymiH0(X, E). Thus, applying cohomology to this sequence yields

0→ Vk ⊗Hk(X × P,G ⊗ q∗OP(−k))
∼→ Hk(X × P,SymkG ⊗ G)→ 0.

Finally, it suffices to show that Hk(X ×P,G ⊗ q∗OP(−k)) ∼= C. For this twist (11) by q∗OP(−k) to
get

0→ q∗OP(−k − 2)→ H0(X, E)⊗ q∗OP(−k − 1)→ G ⊗ q∗OP(−k)→ 0.

Observe that Hi(X×P, q∗OP(−k−1)) = 0 for i = k, k+1 and that Hk+1(X×P, q∗OP(−k−2)) ∼= C
via Künneth. This produces the exact sequence

0→ Hk(X × P,G ⊗ q∗OP(−k))
∼→ C→ 0.

Proposition 3.6. [Kem20, Prop. 1.5] There is a natural isomorphism

Hk(X × P,Symk+1G)
∼→ Hk(X × P,SymkG ⊗ p∗L ⊗ IZ).

Proof. Consider the composite

Hk(X × P,Symk+1G)→ Hk(X × P,SymkG ⊗ G)→ Hk(X × P,SymkG ⊗ p∗L ⊗ IZ)

where the first map is obtained from the natural map Symk+1G → SymkG ⊗G and the second map
is the natural isomorphism of lemma 3.5. The composition Symk+1G → SymkG ⊗G → Symk+1G is
just multiplication by k + 1 so Hk(X × P,Symk+1G) ↪→ Hk(X × P,SymkG ⊗ G) and consequently
the composite is injective. Lemma 3.3 and 3.4 imply that the left hand side and the right hand side
of the composite have the same dimensions.
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Lemma 3.7. Here is a collection of isomorphisms for later application:

(i) R1π∗S = 0

(ii) R1π∗Γ = 0

Let F be a locally free coherent sheaf on X × P, then

(iii) π∗(π
∗F ⊗ ID) ∼= F ⊗ IZ

(iv) Rjπ∗(π
∗F ⊗ ID) = 0 for all j > 0

(v) Rjπ∗π
∗F = 0 for all j > 0.

Proof. The last three assertions are direct consequences of the projection formula using π∗ID ∼= IZ
and Rjπ∗ID = 0 = Rjπ∗OD = 0 for all j > 0. Consider the short exact sequence

0→ S → π∗G → p′∗L ⊗ ID → 0.

Pushing down on X × P and using the last three assertions, one obtains the exact sequences

0→ π∗S → G → p∗L ⊗ IZ → R1π∗S → 0

and
0→ R2π∗S → 0.

Hence, one sees immediately that R2π∗S = 0. Since the map G � p∗L ⊗ IZ is the surjection from
the beginning of the construction of the secant bundles, R1π∗S = 0 as well. Now, consider

0→ S → π∗M→ Γ→ 0

and push it on X × P to get
0→ R1π∗Γ→ R2π∗S.

Since R2π∗S vanishes, R1π∗Γ does as well.

Now, we can proof Voisin’s theorem.

Theorem 3.8 (Voisin). [Kem20, Thm. 1.6] Hi(B,
k+1−i∧

π∗M⊗ SymiS) = 0 for 1 ≤ i ≤ k + 1.

Proof. Note that π∗G ∼= q′∗q′∗(p
′∗L ⊗ ID). By construction, the vector bundle S sits in the short

exact sequence
0→ S → π∗G → p′∗L ⊗ ID → 0.

Applying the i-th symmetric power results in

0→ SymiS → Symiπ∗G → Symi−1π∗G ⊗ p′∗L ⊗ ID → 0. (12)

Pushing the exact sequence down on X × P yields

0→ π∗SymiS → SymiG → Symi−1G ⊗ p∗L ⊗ IZ → 0

by the last lemma. As a consequence of lemma 3.7 and theorem 1.2, we can identifiy

H l(B, Symiπ∗G)→ H l(B, Symi−1π∗G ⊗ p′∗L ⊗ ID)

with
H l(X × P,SymiG)→ H l(X × P,Symi−1G ⊗ p∗L ⊗ IZ)
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for every l. Set i = k + 1 and take cohomology of (12) to obtain

Hk(Symk+1π∗G)→ Hk(Symkπ∗G ⊗ p′∗L ⊗ ID)→ Hk+1(Symk+1S)→ Hk+1(Symk+1π∗G).

By proposition 3.6, the first map is an isomorphism and by lemma 3.3 the last vector space is

zero. Thus, Hk+1(B, Symk+1S) = 0. It remains to show that Hi(B,
k+1−i∧

π∗M⊗ SymiS) = 0 for

1 ≤ i ≤ k. To simplify the notation define Fj :=
k+1−j∧

M. Tensoring the sequence (12) with the

bundle π∗Fi ∼=
k+1−i∧

π∗M results in

0→ π∗Fi ⊗ SymiS → π∗Fi ⊗ Symiπ∗G → π∗Fi ⊗ Symi−1π∗G ⊗ p′∗L ⊗ ID → 0.

Hence, it suffices to show

Hi(B, π∗Fi ⊗ Symiπ∗G) = 0 = Hi−1(B, π∗Fi ⊗ Symi−1π∗G ⊗ p′∗L ⊗ ID)

for all 1 ≤ i ≤ k.

(i) For the first vanishing, note that by theorem 1.2 and lemma 3.7 it is enough to show that

Hi(X × P,Fi ⊗ SymiG) = 0

for all 1 ≤ i ≤ k. Take the i-th symmetric power of (11) and tensor it with Fi to obtain

0→ Vi−1 ⊗Fi ⊗ q∗OP(−i− 1)→ Vi ⊗Fi ⊗ q∗OP(−i)→ Fi ⊗ SymiG → 0.

Using the Künneth formula, one sees that

Hi(X × P,Fi ⊗ q∗OP(−i)) = 0 = Hi+1(X × P,Fi ⊗ q∗OP(−i− 1))

for all 1 ≤ i ≤ k.

(ii) Again, by theorem 1.2 lemma 3.7, it suffices to prove the vanishing of

Hi−1(X × P,Fi ⊗ Symi−1G ⊗ p∗L ⊗ IZ)

for all 1 ≤ i ≤ k. Taking the (i − 1)-th symmetric power of sequence (11) and tensoring it with
Fi ⊗ p∗L ⊗ IZ results in

0→ (Vi−2 ⊗Fi ⊗ L�OP(−i))⊗ IZ → (Vi−1 ⊗Fi ⊗ L�OP(−i+ 1))⊗ IZ
→ Fi ⊗ Symi−1G ⊗ p∗L ⊗ IZ → 0.

Thus, it is enough to show that

Hi−1(X × P, (Fi ⊗ L�OP(−i+ 1))⊗ IZ) = 0 = Hi(X × P, (Fi ⊗ L�OP(−i))⊗ IZ)

for all 1 ≤ i ≤ k. Twisting the sequence (9) with Fi ⊗ q∗OP(−i+ 1), one obtains

0→ Fi ⊗ q∗OP(−i− 1)→ Fi ⊗ E �OP(−i)→ (Fi ⊗ L�OP(−i+ 1))⊗ IZ → 0.

The Künneth formula provides

Hi−1(X × P,Fi ⊗ E �OP(−i)) = 0 = Hi(X × P,Fi ⊗OP(−i− 1))

for all 1 ≤ i ≤ k. Ergo, Hi−1(X × P, (Fi ⊗L�OP(−i+ 1))⊗ IZ) = 0 for all 1 ≤ i ≤ k. The other
vanishing is proven similarly.
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4 Application to the geometric syzygy conjecture

In this section the techniques in the proof of Voisin’s theorem will be used to prove a result that
implies the geometric syzygy conjecture.

Theorem 4.1. [Kem20, Thm. 2.1] The natural homomorphism

ψ : H1(B,

k∧
π∗M⊗ p′∗L) � H1(B,

k∧
Γ⊗ p′∗L)

is surjective.

Remark. Using the kernel bundle description, this theorem can be translated to: There is a natural
surjection

Kk−1,2(X,L) � H1(B,

k∧
Γ⊗ p′∗L).

Proof. The map ψ is obtained by twisting (10) with p′∗L

· · · →
k−2∧

π∗M⊗ Sym2S ⊗ p′∗L →
k−1∧

π∗M⊗S ⊗ p′∗L →
k∧
π∗M⊗ p′∗L →

k∧
Γ⊗ p′∗L → 0

and taking cohomology. Using the same trick as in the beginning of section 3.3, one concludes that
it suffices to show

Hi+1(B,

k−i∧
π∗M⊗ SymiS ⊗ p′∗L) = 0

for all 1 ≤ i ≤ k. Tensoring the sequence (12) with
k−i∧

π∗M⊗ p′∗L, results in

0→
k−i∧

π∗M⊗ SymiS ⊗ p′∗L →
k−i∧

π∗M⊗ Symiπ∗G ⊗ p′∗L

→
k−i∧

π∗M⊗ Symi−1π∗G ⊗ p′∗L2 ⊗ ID → 0.

Therefore, using theorem 1.2 and lemma 3.7, it is enough to prove

(i) Hi+1(X × P,
k−i∧
M⊗ SymiG ⊗ p∗L) = 0

(ii) Hi(X × P,
k−i∧
M⊗ Symi−1G ⊗ p∗L2 ⊗ IZ) = 0.

To shorten the notation define Fi :=
k−i∧
M and Vi := SymiH0(X, E).

(i) Take Symi of the short exact sequence (11) and tensor it with Fi ⊗ p∗L to get

0→ Vi−1 ⊗Fi ⊗ L�OP(−i− 1)→ Vi ⊗Fi ⊗ L�OP(−i)→ Fi ⊗ SymiG ⊗ p∗L → 0.

Thus, it suffices to show the vanishings

Hi+1(X × P,Fi ⊗ L�OP(−i)) = 0 = Hi+2(X × P,Fi ⊗ L�OP(−i− 1))

for all 1 ≤ i ≤ k, which follow from the Künneth formula.
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(ii) Taking the (i− 1)-th symmetric power of (11) and tensoring it with Fi ⊗ p∗L2 ⊗ IZ yields

0→ (Vi−2 ⊗Fi ⊗ L2 �OP(−i))⊗ IZ → (Vi−1 ⊗Fi ⊗ L2 �OP(−i+ 1))⊗ IZ
→ Fi ⊗ Symi−1G ⊗ p∗L2 ⊗ IZ → 0.

Ergo, it suffices to show

Hi+1(X × P, (Fi ⊗ L2 �OP(−i))⊗ IZ) = 0 = Hi(X × P, (Fi ⊗ L2 �OP(−i+ 1))⊗ IZ).

For the first vanishing, the sequence (9) is tensored with Fi ⊗ L�OP(−i) to get

0→ Fi ⊗ L�OP(−i− 2)→ Fi ⊗ (E ⊗ L) �OP(−i− 1)→ (Fi ⊗ L2 �OP(−i))⊗ IZ → 0.

Therefore, it is enough to show

Hi+1(X × P,Fi ⊗ (E ⊗ L) �OP(−i− 1)) = 0 = Hi+2(X × P,Fi ⊗ L�OP(−i− 2))

for 1 ≤ i ≤ k, which follows from the Künneth formula. For the second vanishing, one proceeds as
before but tensors (9) with Fi ⊗ L�OP(−i+ 1) instead of Fi ⊗ L�OP(−i).

Lemma 4.2. [Kem20, Lem. 2.2]
k∧

Γ ∼= q′∗OP(k)⊗ ID.

Proof. The bundle Γ has rank k so
k∧

Γ = det(Γ). Taking determinants of

0→ Γ→ q′∗W → p′∗L|D → 0

yields det(Γ) ∼= q′∗ det(W)⊗ det(p′∗L|D)∗. Taking determinants of

0→ p′∗L ⊗ ID → p′∗L → p′∗L|D → 0

implies det(p′∗L|D) ∼= I∗D so det(Γ) ∼= q′∗ det(W)⊗ ID. Consider

0→ q∗(p
∗L ⊗ IZ)→ H0(X,L)⊗OP →W → 0

to obtain det(W) ∼= det(q∗(p
∗L ⊗ IZ))∗. Sequence (7)

0→ OP(−2)→ H0(X, E)⊗OP(−1)→ q∗(p
∗L ⊗ IZ)→ 0

combined with lemma 1.9, yields det(q∗(p
∗L ⊗ IZ)) ∼= OP(−k − 2) ⊗ OP(2) ∼= OP(−k). Hence,

det(W) ∼= OP(k) and det(Γ) ∼= q′∗OP(k)⊗ ID.

Corollary 4.2.1. [Kem20, Cor. 2.3] The map

ψ : H1(B,

k∧
π∗M⊗ p′∗L)

∼→ H1(B,

k∧
Γ⊗ p′∗L)

is an isomorphism and induces a natural isomorphism Kk−1,1(X,L) ∼= Symk−2H0(X, E).

Proof. The map ψ is surjective hence it is an isomorphism if both vector spaces have the same
dimension. Combine the previous lemma with theorem 1.2 and lemma 3.7 to obtain

H1(B,

k∧
Γ⊗ p′∗L) ∼= H1(B, q′∗OP(k)⊗ ID ⊗ p′∗L) ∼= H1(X × P, (L�OP(k))⊗ IZ).

Twist sequence (9) by q∗OP(k) to get

0→ OX �OP(k − 2)→ E �OP(k − 1)→ (L�OP(k))⊗ IZ → 0.

The Künneth formula implies
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(i) H1(X × P, E �OP(k − 1)) = 0

(ii) H2(X × P, E �OP(k − 1)) = 0

(iii) H2(X × P,OX �OP(k − 2)) ∼= Symk−2H0(X, E)∗.

Consequently, the boundary map yields an isomorphism

H1(B,

k∧
Γ⊗ p′∗L)

∼→ Symk−2H0(X, E)∗.

Therefore, pre-composing this isomorphism with ψ gives a surjection

Kk−1,2(X,L) � Symk−2H0(X, E)∗

due to theorem 4.1 and the following remark. Now, dualize and use Koszul duality to obtain an
injective map

Symk−2H0(X, E) ↪→ Kk−1,1(X,L).

Voisin’s theorem implies that both vector spaces have the same dimension [Kem19], which implies
the result.

Theorem 4.3. [Kem20, Thm. 0.2] There is a map of sheaves f : Kk−1,1(X,L)∗⊗OP → OP(k−2)
such that the diagram

Kk−1,1(X,L)∗ Symk−2H0(X, E)∗

Kk−2,1(X,L) H1(B,
k∧

Γ⊗ p′∗L)

H0(f)

∼=
∼=

ψ

commutes (the isomorphism of the right hand side was constructed in the proof of corollary 4.2.1).

Proof. Pushing the short exact sequence 0→ Γ→ q′∗W → p′∗L|D → 0 on X × P yields

0→ Γ′ → q∗W → p∗L|Z → 0

since R1π∗Γ = 0 due to lemma 3.7. Taking the k-th exterior power yields a natural map
k∧

Γ′ →
k∧
q∗W ∼= q∗OP(k) with image equal to IZ ⊗ q∗OP(k), see [EL12, Cor. 3.7]. This map can

be identified with

k∧
π∗Γ→ π∗

k∧
Γ ∼= π∗(ID ⊗ q′∗OP(k)) ↪→ π∗

k∧
q′∗W ∼=

k∧
q∗W

and hence the map ψ : H1(B,
k∧
π∗M ⊗ p′∗L) → H1(B,

k∧
Γ ⊗ p′∗L) can be identified with the

composition

ψ : H1(X × P,
k∧
M⊗ p∗L)→ H1(X × P,

k∧
Γ′ ⊗ p∗L)→ H1(X × P, (L�OP(k))⊗ IZ).

Note that q∗(
k∧
M⊗ p∗L) ∼= H0(X,

k∧
ML ⊗ L)⊗OP and therefore Hi(P, q∗(

k∧
M⊗ p∗L)) = 0 for

all i > 0. The Leray spectral sequence then yields an isomorphism

H1(X × P,
k∧
M⊗ p∗L) ∼= H0(P, R1q∗(

k∧
M⊗ p∗L)).
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Twisting the sequence (11) with q∗OP(k) and taking direct image under q results in

0→ OP(k − 2)→ H0(X, E)⊗OP(k − 1)→ q∗((L�OP(k))⊗ IZ)→ R1q∗(OX �OP(k − 2)) = 0

since
R1q∗(OX �OP(k − 2)) ∼= H1(X,OX)⊗OP(k − 2) = 0.

The sheaf on the left hand side and the sheaf in the middle have no higher cohomology, so
Hi(P, q∗((L � OP(k)) ⊗ IZ)) = 0 for all i > 0. Using the Leray spectral sequence, one obtains
an isomorphism

H1(X × P, (L�OP(k))⊗ IZ) ∼= H0(P, R1q∗((L�OP(k))⊗ IZ)).

Ergo, taking global sections of

Kk−1,1(X,L)∗ ⊗OP ∼= R1q∗(

k∧
M⊗ p∗L)→ R1q∗((L�OP(k))⊗ IZ)

results in ψ. Again, twist the sequence (11) with q∗OP(k) and apply q∗ to obtain

R1q∗(E �OP(k− 1))→ R1q∗((L�OP(k))⊗IZ)→ R2q∗(OX �OP(k− 2))→ R2q∗(E �OP(k− 1)).

Using the Künneth formula, one sees that

(i) R1q∗(E �OP(k − 1)) = 0

(ii) R2q∗(E �OP(k − 1)) = 0

(iii) R2q∗(OX �OP(k − 2)) ∼= R2q∗(OX×P)⊗OP(k − 2).

The flat base change theorem [Har77, III Prop. 9.3] applied to P→ Spec(C) implies R2q∗OX×P ∼=
H2(X,OX)⊗OP. Hence this yields an isomorphism

R1q∗((L�OP(k))⊗ IZ) ∼= R2q∗OX×P ⊗OX×P(k − 2) ∼= OP(k − 2)

and therefore ψ can be identified with taking global sections of

f : Kk−1,1(X,L)∗ ⊗OP → R1q∗((L�OP(k))⊗ IZ) ∼= OP(k − 2). (13)

Theorem 4.4. [Kem20, Thm. 0.2] Kk−1,1(X,L, H0(X,L⊗IZ(s))) is a one-dimensional subspace
of Kk−1,1(X,L) and the morphism

ψ̃ : P(H0(X, E))→ P(Kk−1,1(X,L))

[s] 7→ Kk−1,1(X,L, H0(X,L ⊗ IZ(s)))

is the Veronese embedding of degree k − 2, i.e. ψ induces an isomorphism

Symk−2H0(X, E))
∼→ Kk−1,1(X,L).

Proof. Consider the map (13) and note that the sheaves on both sides are globally generated. By
construction, this map is surjective on global sections and hence surjective itself. Use the natural
isomorphism Kk−1,1(X,L) ∼= Symk−2H0(X, E) and pass to the level of graded rings to get⊕

n≥0

Symk−2H0(X, E)∗ ⊗ SymnH0(X, E)∗ �
⊕
n≥0

Symn+k−2H0(X, E)∗.
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This yields a Veronese embedding

ψ̃ : P(H0(X, E)) ↪→ P(Symk−2H0(X, E))
∼→ P(Kk−1,1(X,L))

of degree k − 2. It remains to prove that for all t ∈ H0(X, E) \ {0}

ψ̃([t]) = Kk−1,1(X,L, H0(X,L ⊗ IZ(s))).

Take a point [t] ∈ P(H0(X, E)∗) and note that ψ̃ sends [t] to the point in P(Kk−1,1(X,L)) that
corresponds to the zero ideal in⊕

n≥0

Symk−2H0(X, E)∗ ⊗ SymnH0(X, E)∗ ⊗ κ([t]).

Going through the identifications of (13) backwards, provides

H0(P,Kk−1,1(X,L)∗ ⊗OP ⊗ κ([t])→ OP(k − 2)⊗ κ([t]))

=̂ H0(P, R1q∗(

k∧
M⊗ p∗L)⊗ κ([t])→ R1q∗((L�OP(k))⊗ IZ)⊗ κ([t])).

Note that Grauert’s theorem implies

(i) R1q∗(
k∧
M⊗ p∗L)⊗ κ([t]) ∼= H1(X,

k∧
ML ⊗ L)

(ii) R1q∗((L�OP)⊗ IZ)⊗ κ([t]) ∼= H1(X,L ⊗ IZ(t)).

Using these isomorphisms, the fibre over [t] can be identified with

H1(X,

k∧
ML ⊗ L → L⊗ IZ(t)).

Looking at the first identifications, one sees that this map factors into

H1(X,

k∧
ML ⊗ L)→ H1(X,

k∧
Γ′t ⊗ L)→ H1(X,L ⊗ IZ(t))

and was obtained by restricting the morphism
k∧
π∗M⊗ p′∗L →

k∧
Γ ⊗ p′∗L to the fibre Bt of q′

over [t]. Ergo, we can identify the fibre of (13) with the natural surjection

H1(Bt,

k∧
π∗tML ⊗ L) � H1(Bt,

k∧
Γt ⊗ π∗tL).

There are isomorphisms

(i)
k∧
ML ⊗L ∼=

k∧
M∗L: The bundleML is locally free of rank 2k and hence the wedge product

yields a bilinear form
k∧
ML×

k∧
ML → det(ML) ∼= L∗. This bilinear form is non-degenerate,

which implies the desired isomorphism.

(ii)
k∧

Γt⊗π∗tL ∼=
k∧
S∗t : This is obtained by taking the determinants of 0→ St → π∗tML → Γt →

0 since St and Γt are locally free of rank k.
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Using these isomorphisms, one can identify the fibre of (13) with the map

H1(Bt,

k∧
π∗tM∗L) � H1(Bt,

k∧
S∗t ).

Note that from dualizing the short exact sequence

0→ St → π∗tML → Γt → 0

and taking the k-th exterior power, the same map in H1 arises. Now, dualize the above surjection
and apply Serre duality to get

H1(Bt,

k∧
St ⊗OBt(Dt)) ↪→ H1(Bt,

k∧
π∗tML ⊗OBt(Dt))

(the canonical sheaf of the blowup of X along Z(t) is isomorphic to OBt
(Dt)). Note that there are

short exact sequences

0→ St → H0(X,L ⊗ IZ(t))⊗OBt
→ π∗tL ⊗ IDt

→ 0

and
0→ π∗tML → H0(X,L)⊗OBt

→ π∗tL → 0

with H0(X,L⊗IZ(t)) ∼= H0(Bt, π
∗
tL⊗IDt

) and H0(X,L) ∼= H0(Bt, π
∗
tL). Consequently, the kernel

bundle description identifies the injection above with

Kk−1,1(Bt,OBt
(Dt), π

∗
tL ⊗ IDt

) ↪→ Kk−1,1(Bt,OBt
(Dt), π

∗
tL).

Consider the fibre product diagram

Dt Bt

Z(t) X.

πt

The commutativity implies π∗tLn|Dt
∼= ODt and hence

H0(Dt, (π
∗
tLn ⊗OBt(Dt))|Dt)

∼= H0(Dt,OBt(Dt)|Dt)
∼= H0(P1,OP1(−1)) = 0.

for all n. Thus, the short exact sequence

0→ π∗tLn → π∗tLn ⊗OBt
(Dt)→ (π∗tLn ⊗OBt

(Dt))|Dt
→ 0

induces an isomorphism

H0(Bt, π
∗
tLn ⊗OBt

(Dt)) ∼= H0(Bt, π
∗
tLn) ∼= H0(X,Ln)

for any n. Therefore, we can naturally identify the fibre of (13) with

Kk−1,1(X,L, H0(X,L ⊗ IZ(t))) ↪→ Kk−1,1(X,L).
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A List of exact sequences

Here is a list with the most frequently used exact sequences, including their numbering:

(1)
0→ FC,A → H0(C,A)⊗OX → i∗A → 0

(2)
0→ H0(C,A)∗ ⊗OX → F∗C,A → i∗(ωC ⊗A∗)→ 0

(3)

· · · → Symi−2F2 ⊗
2∧
F1 → Symi−1F2 ⊗F1 → SymiF2 → SymiF3 → 0

(4)

· · · →
i−2∧
F2 ⊗ Sym2F1 →

i−1∧
F2 ⊗F1 →

i∧
F2 →

i∧
F3 → 0

(5)

0→ SymiF1 → SymiF2 → Symi−1F2 ⊗F3 → Symi−2F2 ⊗
2∧
F3 → · · ·

(6)

0→
i∧
ML →

i∧
H0(X,L)⊗OX →

i−1∧
ML ⊗ L → 0

(7)

0→ OX
s→ E ∧s→ IZ(s) ⊗ L → 0

(8)
0→ IZ(s) ⊗ L → L → L|Z(s) → 0

(9)

0→ OX �OP(−2)
·id→ E �OP(−1)→ p∗L ⊗ IZ → 0

(10)

· · · →
k−1∧

π∗M⊗ Sym2S →
k∧
π∗M⊗S →

k+1∧
π∗M→ 0

(11)
0→ q∗OP(−2)→ H0(X, E)⊗ q∗OP(−1)→ G → 0

(12)
0→ SymiS → Symiπ∗G → Symi−1π∗G ⊗ p′∗L ⊗ ID → 0
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